X chromosome retains the memory of its parental origin in murine embryonic stem cells

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 813-821 ◽  
Author(s):  
T. Tada ◽  
M. Tada ◽  
N. Takagi

A cytogenetic and biochemical study of balloon-like cystic embryoid bodies, formed by newly established embryonic stem (ES) cell lines having a cytogenetically or genetically marked X chromosome, revealed that the paternally derived X chromosome was inactivated in the majority of cells in the yolk sac-like mural region consisting of the visceral endoderm and mesoderm. The nonrandomness was less evident in the more solid polar region containing the ectodermal vesicle, mesoderm and visceral endoderm. Since the same was true in embryoid bodies derived from ES cells at the 30th subculture generation, it was concluded that the imprinting responsible for the preferential inactivation of the paternal X chromosome that was limited to non-epiblast cells of the female mouse embryos, was stably maintained in undifferentiated ES cells. Differentiating epiblast cells should be able to erase or avoid responding to the imprint.

2001 ◽  
Vol 13 (1) ◽  
pp. 15 ◽  
Author(s):  
J. Rathjen ◽  
S. Dunn ◽  
M. D. Bettess ◽  
P. D. Rathjen

The controlled differentiation of pluripotent cells will be a prerequisite for many cell therapies. We have previously reported homogeneous conversion of embryonic stem (ES) cells in vitro to early primitive ectoderm-like (EPL) cells, equivalent to early primitive ectoderm, an obligatory differentiation intermediate between ES cells and somatic cell populations. Early primitive ectoderm-like cells differentiated within aggregates form mesodermal lineages at the expense of ectoderm. In this work we demonstrate that the failure of EPL cells to form ectodermal cell types does not reflect an inherent restriction in developmental potential. Early primitive ectoderm-like cells form ectodermal derivatives such as neurons in response to neural inducers such as retinoic acid, or when differentiated in the environment provided by ES cell embryoid bodies. This could be explained by signals from the extraembryonic cell type visceral endoderm which forms in differentiating ES cell but not EPL cell aggregates. Consistent with this possibility, culture of EPL cell aggregates in the presence of visceral endoderm-like signals did not prevent differentiation of the pluripotent cells, but resulted in suppression of mesoderm formation. These results suggest a role for visceral endoderm in regulation of germ layer specification from pluripotent cells, and can be integrated into a model for cell differentiation in vitro and in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4599-4599
Author(s):  
Taisuke Kanaji ◽  
Takashi Okamura ◽  
Peter J. Newman

Abstract Abstract 4599 Filamin A is a major non-muscle actin binding protein that plays an important role in cross-linking cortical actin filaments into three-dimensional networks. In addition to its role as a cytoskeletal scaffolding molecule, Filamin A is also known to bind more than 30 other proteins, regulating their subcellular location and coordinating their ability to signal. To analyze the role of filamin A in mouse embryonic stem (ES) cell maturation, we generated filamin ALow ES cells by introducing a micro-RNA that specifically downregulates filamin A expression under the control of a cytomegalovirus promoter. Filamin ALow ES cells exhibited a more rounded morphology than did their wild-type filamin ANormal counterparts, and expressed increased levels of the ES cell transcription factor Nanog. In contrast, non-transfected cells in the same culture dish retained normal expression of filamin A, expressed low levels of Nanog, and exhibited a more elongated and spread phenotype characteristic of differentiating cells. Further evidence for a role for filamin A in ES cell differentiation was provided by the observation that withdrawing leukemia inhibitory factor (LIF) to induce ES cell differentiation was accompanied by increased expression of filamin A, a concomitant loss of Nanog expression, and acquisition of a differentiated morphology. Filamin ALow ES cells were able to retain their undifferentiated phenotype, as evaluated by alkaline phosphatase (Alp) activity, in the presence of a 10-fold lower concentration of LIF than was permissive for filamin ANormal ES cells, or following exposure to the differentiating agent, bone morphogenic protein 4 (BMP4). LIF-induced phosphorylation of ERK was decreased in filamin ALow relative to filamin ANormal ES cells, as was BMP-induced phosphorylation of Smad1/5 - two signaling pathways that initiate ES cell differentiation. Finally, embryoid bodies comprised of filamin ALow ES cells were unable to differentiate into CD41+ hematopoietic progenitor cells. Taken together, these data demonstrate that filamin A plays a previously unrecognized, but critical, scaffolding function that support both the LIF - ERK and BMP4 - Smad1/5 signaling pathways leading to ES and hematopoietic cell differentiation. Manipulation of filamin levels might be useful in the future to modulate the differentiation requirements for a variety of clinically-and therapeutically-useful stem cells. Disclosures: Newman: Novo Nordisk: Consultancy; New York Blood Center: Membership on an entity's Board of Directors or advisory committees.


1995 ◽  
Vol 269 (6) ◽  
pp. H1913-H1921 ◽  
Author(s):  
M. G. Klug ◽  
M. H. Soonpaa ◽  
L. J. Field

The proliferative capacity of embryonic stem (ES) cell-derived cardiomyocytes was assessed. Enriched preparations of cardiomyocytes were isolated by microdissection of the cardiogenic regions of cultured embryoid bodies. The identity of the isolated cells was established by immunocytology, and mitotic activity was monitored by [3H]thymidine incorporation and pulse-chase experiments. ES-derived cardiomyocytes were mitotically active and predominantly mononucleated at 11 days after cardiogenic induction. By 21 days postinduction, cardiomyocyte DNA synthesis was markedly decreased, with a concomitant increase in the percentage of multinucleated cells. Interestingly, the duration of active cardiomyocyte reduplication in the ES system appeared to be roughly similar to that observed during normal murine cardiogenesis. Given these observations, as well as the genetic tractability of ES cells, ES-derived cardiogenesis might provide a useful in vitro system with which to assess the molecular regulation of the cardiomyocyte cell cycle.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4059-4059
Author(s):  
Aravind Ramakrishnan ◽  
Brian Hayes ◽  
Sara R. Fagerlie ◽  
Szczepan Baran ◽  
Michael Harkey ◽  
...  

Abstract Embryonic stem (ES) cells have created considerable excitement in the last few years due to their unlimited potential to produce cells for tissue repair and replacement. However, a large animal pre-clinical model is necessary to establish the safety and efficacy of ES cell-derived tissue replacement therapy. The canine model has long been used in medical research, has been well established to study adult stem cell transplantation and has been highly predictive of clinical outcomes in humans, more so than rodent models. Given the documented record for extrapolating from dog to man, we hypothesize that the dog would serve as an ideal pre-clinical in vivo model for studying the clinical applications of ESC derived tissue. Eleven putative ES cell lines were initiated from canine blastocysts harvested from natural matings. One line described here, FHDO-7, has been maintained through 34 passages and has many characteristics of ES cells from other species. FHDO-7 cells are alkaline phosphatase positive and express both message and protein for the Oct4 transcription factor. They also express message for Nanog and do not express message for Cdx2 which is associated with trophectoderm. Furthermore, they express a cluster of pluripotency-associated microRNAs (miR-302b, miR-302c and miR-367) that have been found to be characteristic of human and mouse ES cells. The FHDO-7 cells grow on feeder layers of modified mouse embryonic fibroblasts (MEF) as flat colonies that resemble ES cells from mink, a close phylogenetic relative of dog. When cultured in nonadherent plates without feeders the cells form embryoid bodies (EB). Under various culture conditions the EBs give rise to ectoderm-derived neuronal cells expressing β3-tubulin, mesoderm-derived osteocytes producing bone, and endoderm-derived cells expressing alpha feto protein or Clara cell specific protein. These results indicate that FHDO-7 is a pluripotent embryonic stem cell line.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3093-3093
Author(s):  
Sharon Singh ◽  
Sehba Dsilva ◽  
Jeffrey Michael Lipton ◽  
Steven Ellis ◽  
Johnson M. Liu

Abstract Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome that is characterized by erythroid hypoplasia, risk of other cytopenias, congenital anomalies and a cancer predisposition. Thus far, all the genes identified as mutated in DBA encode ribosomal proteins (RPS19, RPS17, RPS24, RPL5, RPL11, and RPL35a). In the 25% of DBA patients with RPS19 mutations, haploinsufficiency of RPS19 has been linked to faulty ribosome biogenesis, which ultimately predisposes erythroid precursors to apoptosis through as yet unknown mechanisms. Previous attempts by others to apply targeted mutagenesis to Rps19 were unsuccessful because of compensatory Rps19 expression from the non-targeted allele. We have concentrated our efforts on characterizing the murine Rps19-mutated embryonic stem (ES) cell, S17-10H1, which was generated using a genetrap strategy. The gene-trap vector contains a strong splice acceptor-β-geo cassette-poly A termination, and following insertion, it should cause splicing with the exon upstream and termination at the poly A signal, effectively cutting Rps19 in half. S17-10H1 was sequenced using 3′ RACE (rapid amplification of cDNA ends) to confirm insertion of the vector between exons 2 and 3 of Rps19. PCR with primers against the β-geo sequence was also used to confirm insertion of the gene trap vector into the mutant ES cells. Western blot analysis of two different ES cell samples confirmed at least 50% less Rps19 protein than found in the wild-type parental ES cell line, AK7. The ES cells were subsequently induced to undergo primary differentiation into embryoid bodies (EBs). Although there was no significant difference in the EB size or shape at day 5 of culture, the number of EBs that formed in the mutant cultures was decreased by at least three-fold. Preliminary experiments indicated no obvious morphological differences in day 13 EBs derived from parental or mutant ES cells. We attempted to create chimeric mice by microinjection of the S17-10H1 cell line into 36 blastocysts. Six chimeric mice were set up in mating pairs with C57BL/6J partners. Analysis of more than 60 pups from the 60% chimeric male revealed a lack of germline transmission, possibly indicating that this mutation leads to embryonic lethality or inability to complete gametogenesis. We conclude that this ES cell differentiation model mimics the human disease in leading to Rps19 haploinsufficiency and provides a new and potentially powerful tool that can be used to elucidate molecular mechanisms and test potential therapies in DBA.


2002 ◽  
Vol 10 (3) ◽  
pp. 187-199 ◽  
Author(s):  
R Mollard ◽  
BJ Conley ◽  
AO Trounson

Embryonic stem (ES) cells are a primitive cell type derived from the inner cell mass (ICM) of the developing embryo. When cultured for extended periods, ES cells maintain a high telomerase activity, normal karyotype and the pluripotential developmental capacity of their ICM derivatives. Such capacity is best demonstrated by mouse ES cells which can contribute to all tissues of the developing embryo following either their injection into host blastocysts or tetraploid embryo complimentation (for a review see Robertson). For both practical and ethical reasons it is not possible to inject human ES cells into blastocysts for the development of a term fetus. However, when injected beneath the testicular capsule of severe combined immunodeficient (SCID) mice, human ES cells form teratomas comprising tissue representatives of all three embryonic germ layers (ectoderm, mesoderm and endoderm) thus attesting to their pluripotency. Based upon morphological criteria, neuronal, cardiac, bone, squamous epithelium, skeletal muscle, gut and respiratory epithelia are readily identifiable within the human ES-cell-derived teratomas. With the demonstrated capability to isolate and maintain pluripotent human ES cells in vitro, their ability to give rise to tissue representatives of all three embryonic germ layers and the technical advances made possible by research on mouse ES cells, a rapid increase in human ES cell research aimed at drug discovery and human cell and gene therapies has occurred. Indeed in the mouse, dissociated embryoid bodies (EBs) have already been demonstrated capable of repopulating the haematopoietic system of recipient animals (for a review see Keller) and mouse ES cells are currently being used in attempts to repair mouse neural degenerative lesions.


2010 ◽  
Vol 29 (3) ◽  
pp. 297-304 ◽  
Author(s):  
David Pamies ◽  
Néstor Vicente-Salar ◽  
Miguel A. Sogorb ◽  
Enrique Roche ◽  
Juan A. Reig

Embryonic stem (ES) cells are considered an important alternative to develop in vitro screening methods for embryotoxicity. Mouse ES cells can be cultured as cell suspension aggregates termed “embryoid bodies” (EBs) in which cells start to differentiate. We have studied the expression of several genes in the presence of a wide range of concentrations of 5-fluorouracil (5-FU). This well-established embryotoxic compound completely inhibited cell viability at 200 nmol/L in monolayer cultures. At lower concentrations, 5-FU led to decrease in the expression of the α-fetoprotein gene, a marker of the visceral endoderm, in the EBs. However, the expression of several mesodermal gene markers was not significantly affected at these concentrations. These results suggest a high sensitivity of the visceral endoderm differentiation to 5-FU. Therefore, the quantification of the α-fetoprotein gene after exposure to potential embryotoxicants should be considered an additional end point in future embryotoxicity assays in vitro with ES cells.


Reproduction ◽  
2010 ◽  
Vol 139 (3) ◽  
pp. 565-573 ◽  
Author(s):  
Nobuhiro Shimozawa ◽  
Shinichiro Nakamura ◽  
Ichiro Takahashi ◽  
Masanori Hatori ◽  
Tadashi Sankai

Several cell types from the African green monkey (Cercopithecus aethiops), such as red blood cells, primary culture cells from kidney, and the Vero cell line, are valuable sources for biomedical research and testing. Embryonic stem (ES) cells that are established from blastocysts have pluripotency to differentiate into these and other types of cells. We examined an in vitro culture system of zygotes produced by ICSI in African green monkeys and attempted to establish ES cells. Culturing with and without a mouse embryonic fibroblast (MEF) cell monolayer resulted in the development of ICSI-derived zygotes to the blastocyst stage, while culturing with a buffalo rat liver cell monolayer yielded no development (3/14, 21.4% and 6/31, 19.4% vs 0/23, 0% respectively; P<0.05). One of the nine blastocysts, which had been one of the zygotes co-cultured with MEF cells, formed flat colonies consisting of cells with large nuclei, similar to other primate ES cell lines. The African green monkey ES (AgMES) cells expressed pluripotency markers, formed teratomas consisting of three embryonic germ layer tissues, and had a normal chromosome number. Furthermore, expression of the germ cell markers CD9 and DPPA3 (STELLA) was detected in the embryoid bodies, suggesting that AgMES cells might have the potential ability to differentiate into germ cells. The results suggested that MEF cells greatly affected the quality of the inner cell mass of the blastocysts. In addition, AgMES cells would be a precious resource for biomedical research such as other primate ES cell lines.


2007 ◽  
Vol 19 (1) ◽  
pp. 230 ◽  
Author(s):  
Y.-W. Ou ◽  
K.-H. Lee ◽  
L.-R. Chen ◽  
P.-C. Tang ◽  
H.-F. Guu ◽  
...  

Embryonic stem (ES) cells are pluripotent cells from the inner cell mass (ICM) of the blastocyst. They are capable of differentiating to various cell types, such as neural cells, cardiocytes, hepatic cells, and germ cells. The aim of this study was to establish rabbit ES cell lines as an animal model for human diseases. Blastocysts were collected from New Zealand White rabbits during Days 4 to 5 after breeding. After removal of the mucin coat and the zona pellucida by pronase, the embryos were directly cultured in ES cell medium on mitomycin C-treated mouse embryonic fibroblast (MEF) or STO feeder layers. In Experiment 1, the efficiencies of 2 different feeder layers, MEF and STO, in generating rabbit ES cell lines were compared. Six blastocysts were used for each STO and MEF feeder group. The primary ICM colonies were formed in 67% (4/6) of the cultures on the STO and 83% (5/6) on the MEF. Sixty percent of those primary colonies (3/5) were successfully grown into ES-like cell lines in the MEF feeder group. However, no cell lines were established on the STO feeder. In Experiment 2, whole blastocysts or ICMs isolated by immunosurgery were cultured to establish ES cell lines. A total of 21 blastocysts were recovered from 2 does. Eighteen whole blastocysts and 3 isolated ICMs were cultured on the MEF feeders. Twelve (67%) of the cultured whole blastocysts formed primary ICM colonies, of which 5 (42%) of the cultures continuously propagated and formed ES-like cell lines. In the immunosurgical group, 2 of the 3 isolated ICMs formed primary colonies but only 1 ES-like cell line was established. A total of 9 ES-like cell lines maintained morphological undifferentiation after 14 passages and expressed alkaline phosphatase activity. Seven of the 9 ES-like cells expressed Oct-4 and the stage-specific embryonic antigen-4 (SSEA-4) as detected by immunocytochemical staining. Two cell lines were further induced to differentiate into embryoid bodies in suspension culture. Another 3 cell lines were injected into SCID mice and one of them formed a teratoma. The competence of generating chimeric rabbits and the teratogenicity of the established ES-like cell lines are under evaluation. In conclusion, rabbit ES-like cells were efficiently generated and whole-blastocyst culturing on the MEF feeder appeared to be a preferred method for the isolation and maintenance of rabbit ES-like cell lines.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Ming Li ◽  
Yong-Hai Li ◽  
Yi Hou ◽  
Xiao-Fang Sun ◽  
Qingyuan Sun ◽  
...  

The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin–0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.


Sign in / Sign up

Export Citation Format

Share Document