scholarly journals A transport and retention mechanism for the sustained distal localization of Spn-F-IKK  during Drosophila bristle elongation

Development ◽  
2015 ◽  
Vol 142 (13) ◽  
pp. 2338-2351 ◽  
Author(s):  
T. Otani ◽  
K. Oshima ◽  
A. Kimpara ◽  
M. Takeda ◽  
U. Abdu ◽  
...  
Development ◽  
2015 ◽  
Vol 142 (20) ◽  
pp. 3612-3612 ◽  
Author(s):  
Tetsuhisa Otani ◽  
Kenzi Oshima ◽  
Akiyo Kimpara ◽  
Michiko Takeda ◽  
Uri Abdu ◽  
...  

The study of the transport and capture of particles moving in a fluid flow in a porous medium is an important problem of underground hydromechanics, which occurs when strengthening loose soil and creating watertight partitions for building tunnels and underground structures. A one-dimensional mathematical model of long-term deep filtration of a monodisperse suspension in a homogeneous porous medium with a dimensional particle retention mechanism is considered. It is assumed that the particles freely pass through large pores and get stuck at the inlet of small pores whose diameter is smaller than the particle size. The model takes into account the change in the permeability of the porous medium and the permissible flow through the pores with increasing concentration of retained particles. A new spatial variable obtained by a special coordinate transformation in model equations is small at any time at each point of the porous medium. A global asymptotic solution of the model equations is constructed by the method of series expansion in a small parameter. The asymptotics found is everywhere close to a numerical solution. Global asymptotic solution can be used to solve the inverse filtering problem and when planning laboratory experiments.


2015 ◽  
Vol 33 (12) ◽  
pp. 1274
Author(s):  
Maria G KOUSKOURA ◽  
Constantina V MITANI ◽  
Catherine K MARKOPOULOU
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 7106
Author(s):  
Miaotian Sun ◽  
Zeynep Ülker ◽  
Zhixing Chen ◽  
Sivaraman Deeptanshu ◽  
Monika Johannsen ◽  
...  

The retention factor is the key quantity for the thermodynamic analysis of the retention mechanism in chromatographic experiments. In this work, we measure retention factors for moderately polar solutes on four silica-based porous matrices as stationary phases by supercritical fluid chromatography. Elution of the solutes is only possible with binary mixtures of supercritical carbon dioxide (sc-CO2) and modifier (methanol) due to the low polarity of pure sc-CO2. The addition of modifiers makes the retention mechanism more complex and masks interactions between solute and stationary phase. In this work, we develop and validate several retention models that allow the obtaining of retention factors in modifier-free sc-CO2. Such models pave the way for quantifying adsorption interactions between polar solutes and non-swellable porous matrices in pure sc-CO2 based on retention data obtained in sc-CO2/modifier mixtures. The obtained information will thereby facilitate the understanding and design of impregnation processes, which are often performed in modifier-free conditions.


2013 ◽  
Vol 69 (2) ◽  
pp. I_1072-I_1077
Author(s):  
Yoshinori KOSHIKAWA ◽  
Tadashi HIBINO ◽  
Shinya NAKASHITA ◽  
Ichiro YOSHIOKA ◽  
Kenji NAKAMOTO ◽  
...  

1998 ◽  
Vol 332 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Barry WILBOURN ◽  
Darren N. NESBETH ◽  
Linda J. WAINWRIGHT ◽  
Mark C. FIELD

Improperly processed secretory proteins are degraded by a hydrolytic system that is associated with the endoplasmic reticulum (ER) and appears to involve re-export of lumenal proteins into the cytoplasm for ultimate degradation by the proteasome. The chimaeric protein hGHDAF28, which contains a crippled glycosylphosphatidylinositol (GPI) C-terminal signal peptide, is degraded by a pathway highly similar to that for other ER-retained proteins and is characterized by formation of disulphide-linked aggregates, failure to reach the Golgi complex and intracellular degradation with a half life of ∼ 2 h. Here we show that N-acetyl-leucinal-leucinal-norleucinal, MG-132 and lactacystin, all inhibitors of the proteasome, protect hGHDAF28; hGHDAF28 is still proteolytically cleaved in the presence of lactacystin or MG-132, by the removal of ∼ 2 kDa, but the truncated fragment is not processed further. We demonstrate that the ubiquitination system accelerates ER-degradation of hGHDAF28, but is not essential to the process. Overall, these findings indicate that GPI quality control is mediated by the cytoplasmic proteasome. We also show that the presence of a cysteine residue in the GPI signal of hGHDAF28 is required for retention and degradation, as mutation of this residue to serine results in secretion of the fusion protein, implicating thiol-mediated retention as a mechanism for quality control of some GPI signals. Removal of the cysteine also prevents inclusion of hGHDAF28 in disulphide-linked aggregates, indicating that aggregate formation is an additional retention mechanism for this class of protein. Therefore our data suggest that an unpaired terminal cysteine is the retention motif of the hGHDAF28 GPI-processing signal and that additional information may be required for efficient engagement of ER quality control systems by the majority of GPI signals which lack cysteine residues.


Sign in / Sign up

Export Citation Format

Share Document