Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts

Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 349-358 ◽  
Author(s):  
P.L. Durbec ◽  
L.B. Larsson-Blomberg ◽  
A. Schuchardt ◽  
F. Costantini ◽  
V. Pachnis

c-ret encodes a tyrosine kinase receptor that is necessary for normal development of the mammalian enteric nervous system. Germline mutations in c-ret lead to congenital megacolon in humans, while a loss-of-function allele (ret.k-) causes intestinal aganglionosis in mice. Here we examine in detail the function of c-ret during neurogenesis, as well as the lineage relationships among cell populations in the enteric nervous system and the sympathetic nervous system that are dependent on c-ret function. We report that, while the intestine of newborn ret.k- mice is devoid of enteric ganglia, the esophagus and stomach are only partially affected; furthermore, the superior cervical ganglion is absent, while more posterior sympathetic ganglia and the adrenal medulla are unaffected. Analysis of mutant embryos shows that the superior cervical ganglion anlage is present at E10.5, but absent by E12.5, suggesting that c-ret is required for the survival or proliferation of sympathetic neuroblasts. In situ hybridization studies, as well as direct labelling of cells with DiI, indicate that a common pool of neural crest cells derived from the postotic hindbrain normally gives rise to most of the enteric nervous system and the superior cervical ganglion, and is uniquely dependent on c-ret function for normal development. We term this the sympathoenteric lineage. In contrast, a distinct sympathoadrenal lineage derived from trunk neural crest forms the more posterior sympathetic ganglia, and also contributes to the foregut enteric nervous system. Overall, our studies reveal previously unknown complexities of cell lineage and genetic control mechanisms in the developing mammalian peripheral nervous system.

Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2785-2796 ◽  
Author(s):  
Alan J. Burns ◽  
Jean-Marie M. Delalande ◽  
Nicole M. Le Douarin

The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.


2006 ◽  
Vol 235 (5) ◽  
pp. 1413-1432 ◽  
Author(s):  
Karen K. Deal ◽  
V. Ashley Cantrell ◽  
Ronald L. Chandler ◽  
Thomas L. Saunders ◽  
Douglas P. Mortlock ◽  
...  

Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M. Maden ◽  
D.E. Ong ◽  
F. Chytil

We have analysed the distribution of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the day 8.5-day 12 mouse and rat embryo. CRBP is localised in the heart, gut epithelium, notochord, otic vesicle, sympathetic ganglia, lamina terminalis of the brain, and, most strikingly, in a ventral stripe across the developing neural tube in the future motor neuron region. This immunoreactivity remains in motor neurons and, at later stages, motor axons are labelled in contrast to unlabelled sensory axons. CRABP is localised to the neural crest cells, which are particularly noticeable streaming into the branchial arches. At later stages, neural crest derivatives such as Schwann cells, cells in the gut wall and sympathetic ganglia are immunoreactive. An additional area of CRABP-positive cells are neuroblasts in the mantle layer of the neural tube, which subsequently appear to be the axons and cell bodies of the commissural system. Since retinol and retinoic acid are the endogenous ligands for these binding proteins, we propose that retinoids may play a role in the development and differentiation of the mammalian nervous system and may interact with certain homoeobox genes whose transcripts have also been localised within the nervous system.


2016 ◽  
Vol 409 (1) ◽  
pp. 152-165 ◽  
Author(s):  
Jonathan I. Lake ◽  
Marina Avetisyan ◽  
Albert G. Zimmermann ◽  
Robert O. Heuckeroth

2020 ◽  
Author(s):  
Subhash Kulkarni ◽  
Monalee Saha ◽  
Laren Becker ◽  
Zhuolun Wang ◽  
Guosheng Liu ◽  
...  

ABSTRACTThe enteric nervous system (ENS), a collection of neurons contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the embryonic neural crest and remains largely unchanged thereafter. Here, we show that the composition of maturing ENS changes with time, with a decline in neural-crest derived neurons and their replacement by mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.


1998 ◽  
Vol 275 (2) ◽  
pp. G183-G186 ◽  
Author(s):  
V. Pachnis ◽  
P. Durbec ◽  
S. Taraviras ◽  
M. Grigoriou ◽  
D. Natarajan

The enteric nervous system (ENS) in vertebrates is derived from the neural crest and constitutes the most complex part of the peripheral nervous system. Natural and induced mutagenesis in mammals has shown that the tyrosine kinase receptor RET and its functional ligand glial cell line-derived neurotrophic factor (GDNF) play key roles in the development of the ENS in humans and mice. We have developed and briefly describe here a number of assays that analyze the specific function of the RET receptor and its ligand. Our data suggest that the RET signal transduction pathway has multiple roles in the development of the mammalian ENS.


Sign in / Sign up

Export Citation Format

Share Document