enteric ganglia
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgina Navoly ◽  
Conor J. McCann

AbstractEnteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anwarul Karim ◽  
Clara Sze-Man Tang ◽  
Paul Kwong-Hang Tam

Hirschsprung disease (HSCR) is the leading cause of neonatal functional intestinal obstruction. It is a rare congenital disease with an incidence of one in 3,500–5,000 live births. HSCR is characterized by the absence of enteric ganglia in the distal colon, plausibly due to genetic defects perturbing the normal migration, proliferation, differentiation, and/or survival of the enteric neural crest cells as well as impaired interaction with the enteric progenitor cell niche. Early linkage analyses in Mendelian and syndromic forms of HSCR uncovered variants with large effects in major HSCR genes including RET, EDNRB, and their interacting partners in the same biological pathways. With the advances in genome-wide genotyping and next-generation sequencing technologies, there has been a remarkable progress in understanding of the genetic basis of HSCR in the past few years, with common and rare variants with small to moderate effects being uncovered. The discovery of new HSCR genes such as neuregulin and BACE2 as well as the deeper understanding of the roles and mechanisms of known HSCR genes provided solid evidence that many HSCR cases are in the form of complex polygenic/oligogenic disorder where rare variants act in the sensitized background of HSCR-associated common variants. This review summarizes the roadmap of genetic discoveries of HSCR from the earlier family-based linkage analyses to the recent population-based genome-wide analyses coupled with functional genomics, and how these discoveries facilitated our understanding of the genetic architecture of this complex disease and provide the foundation of clinical translation for precision and stratified medicine.


Author(s):  
Nicolas R. Chevalier ◽  
Richard J. Amedzrovi Agbesi ◽  
Yanis Ammouche ◽  
Sylvie Dufour

Neurons and glia of the enteric nervous system (ENS) are constantly subject to mechanical stress stemming from contractions of the gut wall or pressure of the bolus, both in adulthood and during embryonic development. Because it is known that mechanical forces can have long reaching effects on neural growth, we investigate here how contractions of the circular smooth muscle of the gut impact morphogenesis of the developing fetal ENS, in chicken and mouse embryos. We find that the number of enteric ganglia is fixed early in development and that subsequent ENS morphogenesis consists in the anisotropic expansion of a hexagonal honeycomb (chicken) or a square (mouse) lattice, without de-novo ganglion formation. We image the deformations of the ENS during spontaneous myogenic motility and show that circular smooth muscle contractile waves induce longitudinal strain on the ENS network; we rationalize this behavior by mechanical finite element modeling of the incompressible gut wall. We find that the longitudinal anisotropy of the ENS vanishes when contractile waves are suppressed in organ culture, showing that these contractile forces play a key role in sculpting the developing ENS. We conclude by summarizing different key events in the fetal development of the ENS and the role played by mechanics in the morphogenesis of this unique nerve network.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiyi Tang ◽  
Yuwei Li ◽  
Ang Li ◽  
Marianne E. Bronner

AbstractNeural crest stem cells arising from caudal hindbrain (often called cardiac and posterior vagal neural crest) migrate long distances to form cell types as diverse as heart muscle and enteric ganglia, abnormalities of which lead to common congenital birth defects. Here, we explore whether individual caudal hindbrain neural crest precursors are multipotent or predetermined toward these particular fates and destinations. To this end, we perform lineage tracing of chick neural crest cells at single-cell resolution using two complementary approaches: retrovirally mediated multiplex clonal analysis and single-cell photoconversion. Both methods show that the majority of these neural crest precursors are multipotent with many clones producing mesenchymal as well as neuronal derivatives. Time-lapse imaging demonstrates that sister cells can migrate in distinct directions, suggesting stochasticity in choice of migration path. Perturbation experiments further identify guidance cues acting on cells in the pharyngeal junction that can influence this choice; loss ofCXCR4signaling results in failure to migrate to the heart but no influence on migration toward the foregut, whereas loss ofRETsignaling does the opposite. Taken together, the results suggest that environmental influences rather than intrinsic information govern cell fate choice of multipotent caudal hindbrain neural crest cells.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hong Zhang ◽  
Jing-Lu Zhao ◽  
Yi Zheng ◽  
Xiao-Li Xie ◽  
Li-Hua Huang ◽  
...  

Abstract Background Hirschsprung disease (HSCR) is a hereditary defect, which is characterized by the absence of enteric ganglia and is frequently concurrent with Hirschsprung-associated enterocolitis (HAEC). However, the pathogenesis for HSCR is complicated and remains unclear. Recent studies have shown that pro-inflammatory cytokines such as interleukin-11 (IL-11) are involved in the enteric nervous system's progress. It was found that IL-11 SNPs (rs8104023 and rs4252546) are associated with HSCR in the Korean population waiting for replication in an independent cohort. This study evaluated the relationship between IL-11 and the susceptibility of patients to HSCR by performing subphenotype interaction examination, HAEC pre-/post-surgical patient-only association analysis, and independence testing. Methods In this study, a cohort consisting of children from Southern China, comprising 1470 cases and 1473 controls, was chosen to examine the relationship between two polymorphisms (rs8104023 and rs4252546 in IL-11) and susceptibility to HSCR by replication research, subphenotype association analysis, and independence testing. Results The results showed that IL-11 gene polymorphisms (rs8104023 and rs4252546) are not associated with the risk of HSCR in the Chinese population. The results of both short-segment and long-segment (S-HSCR and L-HSCR) surgery (3.34 ≤ OR ≤ 4.05, 0.02 ≤ P ≤ 0.04) showed that single nucleotide polymorphisms (SNP) rs8104023 is associated with susceptibility to HAEC. Conclusions This study explored the relationship between genetic polymorphisms and susceptibility to HAEC in HSCR subtypes for the first time. These findings should be replicated in a larger and multicentre study.


2021 ◽  
Vol 09 (01) ◽  
pp. e28-e32
Author(s):  
Hira Ahmad ◽  
Alejandra Vilanova-Sánchez ◽  
Isabel Amengual ◽  
Laura Guerra-Pastrian ◽  
Marta Garrido-Pontnou ◽  
...  

AbstractHirschsprung disease is the most common neurocristopathy in children, resulting in the congenital loss of enteric ganglia. Rare reports of skip lesions have previously been reported in the literature. We present a case of skip lesions known prior to surgery and managed by pull-through of the right colon that allowed the preservation of the colon.


2020 ◽  
Vol 10 (4) ◽  
pp. 401-410
Author(s):  
Evgeniya S. Pimenova ◽  
Natal′ya S. Korchagina ◽  
Grigoriy A. Korolev ◽  
Dar′ya D. Zyuz′ko ◽  
Margarita S. Saakyan ◽  
...  

Introduction. The pathology of the enteric ganglia can lead to different diseases (Hirschsprungs, neuronal intestinal dysplasia, ganglioneuromatosis, and Chagasse). Causes of acquired dysganglionosis remained unclear. Some authors hypothesized that pathology of the enteral nervous system may be secondary to intestinal ischemia. Aim. To investigate the intestinal function and histological changes of the colon in rats with chronic ischemia. Materials and methods. A total of 20 Sprague Dawley rats underwent surgery (ligation of the terminal mesenteric vessels next to the descending colon). The appetite of animals were checked, and stool were collected after the procedure. Reoperation was performed after 7 (n = 1), 9 (n = 2), 12 (n = 2), 14 (n = 1), 21 (n = 1), 42 (n = 1), 53 (n = 1), and 62 (n = 1) days. The diameter of the colon and changes of the serosa were visualized. In the experimental group, two samples biopsy was performed (ischemic and normal colon). Results. Functional changes were observed in 90% of rats after the ligation of mesenteric vessels (constipation/impact, softening stool/diarrhea, and hemocolitis). Colonic stenosis of the ischemic area in 30% was detected. 70% animals have the intestinal dilatation above the ischemic segment (partial bowel obstruction). Necrosis of the ischemic colon was observed in 20%. Spontaneous fixation of the omentum to the ischemic segment was found in 40% animals. A microscopically inflamed infiltration of the mucosa in the ischemic zone (70%) and in normal colon (50%) was revealed in the ligation group. The number of the enteric ganglia decreased in the ischemic segment. Conclusion. Functional disorders (colitis and obstruction) and morphological changes (inflammation and ganglion cells pathology) were found in rats with chronic mesenteric ischemia.


2020 ◽  
pp. mcp.RA120.002325
Author(s):  
Qin Zhang ◽  
Lihua Wu ◽  
Baoling Bai ◽  
Dan Li ◽  
Ping Xiao ◽  
...  

Hirschsprung disease (HSCR) is a heterogeneous group of neurocristopathy characterized by the absence of the enteric ganglia along a variable length of the intestine. Genetic defects play a major role in the pathogenesis of HSCR while family studies of pathogenic variants in all the known genes (loci) only demonstrate incomplete penetrance and variable expressivity for unknown reasons. Here, we applied large-scale, quantitative proteomics of human colon tissues from 21 patients using iTRAQ method followed by bioinformatics analysis. Selected findings were confirmed by parallel reaction monitoring (PRM) verification. At last the interesting differentially expressed proteins were confirmed by western blot. A total of 5341 proteins in human colon tissues were identified. Among them, 664 proteins with >1.2-fold difference were identified in 6 groups: groups A1 and A2 pooled protein from the ganglionic and aganglionic colon of male, long-segment HSCR patients (L-HSCR, n=7); groups B1 and B2 pooled protein from the ganglionic and aganglionic colon of male, short-segment HSCR patients (S-HSCR, n=7); and groups C1 and C2 pooled protein from the ganglionic and aganglionic colon of female, S-HSCR patients (n=7). Based on these analyses, 49 proteins from 5 pathways were selected for PRM verification, including ribosome, endocytosis, spliceosome, oxidative phosphorylation and cell adhesion. The downregulation of three neuron projection development genes ARF4, KIF5B and RAB8A in the aganglionic part of the colon were verified in 15 paired colon samples using WB. The findings of this study will shed new light on the pathogenesis of HSCR and facilitate the development of therapeutic targets.


2020 ◽  
Author(s):  
Laura Kuil ◽  
Katherine C. MacKenzie ◽  
Clara S Tang ◽  
Jonathan D. Windster ◽  
Thuy Linh Le ◽  
...  

AbstractBackgroundHirschsprung disease (HSCR) is characterized by absence of ganglia in the intestine. Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). HSCR is a complex genetic disease in which the loss of enteric ganglia stems from a combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Pinpointing the responsible culprits within a large CNV is challenging as often many genes are affected. We investigated if we could find deleterious CNVs and if we could identify the genes responsible for the aganglionosis.ResultsDeleterious CNVs were detected in three groups of patients: HSCR-AAM, HSCR patients with a confirmed causal genetic variant and HSCR-isolated patients without a known causal variant and controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that HSCR-AAM patients had larger copy number losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes in Copy Number Losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1 and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression in vivo.ConclusionRare large Copy Number losses - often de novo - contribute to the disease in HSCR-AAM patients specifically. We proved the involvement of five genes in enteric nervous system development and Hirschsprung disease.


2020 ◽  
Vol 222 (10) ◽  
pp. 1745-1755
Author(s):  
David X Liu ◽  
Donna L Perry ◽  
Timothy K Cooper ◽  
Louis M Huzella ◽  
Randy J Hart ◽  
...  

Abstract Neurological signs and symptoms are the most common complications of Ebola virus disease. However, the mechanisms underlying the neurologic manifestations in Ebola patients are not known. In this study, peripheral ganglia were collected from 12 rhesus macaques that succumbed to Ebola virus (EBOV) disease from 5 to 8 days post exposure. Ganglionitis, characterized by neuronal degeneration, necrosis, and mononuclear leukocyte infiltrates, was observed in the dorsal root, autonomic, and enteric ganglia. By immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy, we confirmed that CD68+ macrophages are the target cells for EBOV in affected ganglia. Further, we demonstrated that EBOV can induce satellite cell and neuronal apoptosis and microglial activation in infected ganglia. Our results demonstrate that EBOV can infect peripheral ganglia and results in ganglionopathy in rhesus macaques, which may contribute to the neurological signs and symptoms observed in acute and convalescent Ebola virus disease in human patients.


Sign in / Sign up

Export Citation Format

Share Document