Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus

Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2867-2882 ◽  
Author(s):  
J.S. Kuo ◽  
M. Patel ◽  
J. Gamse ◽  
C. Merzdorf ◽  
X. Liu ◽  
...  

In order to study the mechanism of neural patterning in Xenopus, we used subtractive cloning to isolate genes activated early during this process. One gene isolated was opl, (odd-paired-like) that resembles the Drosophila pair-rule gene odd-paired and encodes a zinc finger protein that is a member of the Zic gene family. At the onset of gastrulation, opl is expressed throughout the presumptive neural plate, indicating that neural determination has begun at this stage while, by neurula, opl expression is restricted to the dorsal neural tube and neural crest. opl encodes a transcriptional activator, with a carboxy terminal regulatory domain, which when removed increases opl activity. opl both sensitizes animal cap ectoderm to the neural inducer noggin and alters the spectrum of genes induced by noggin, allowing activation of the midbrain marker engrailed. Consistent with the later dorsal neural expression of opl, the activated form of opl is able to induce neural crest and dorsal neural tube markers both in animal caps and whole embryos. In ventral ectoderm, opl induces formation of loose cell aggregates that may indicate neural crest precursor cells. Aggregates do not express an epidermal marker, indicating that opl suppresses ventral fates. Together, these data suggest that opl may mediate neural competence and may be involved in activation of midbrain, dorsal neural and neural crest fates.

2014 ◽  
Vol 25 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Laura Kerosuo ◽  
Marianne E. Bronner

Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein.


2008 ◽  
Vol 382 (4) ◽  
pp. 1043-1056 ◽  
Author(s):  
Pablo Armas ◽  
Tristán H. Agüero ◽  
Mariana Borgognone ◽  
Manuel J. Aybar ◽  
Nora B. Calcaterra

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1033-1039 ◽  
Author(s):  
D.E. Smith ◽  
F. Franco del Amo ◽  
T. Gridley

The Drosophila gene snail encodes a zinc-finger protein that is required zygotically for mesoderm formation. Snail acts as a transcriptional repressor during the period of mesoderm formation by preventing expression of mesectodermal and ectodermal genes in the mesoderm anlage. A Xenopus homolog (xsnail) of snail has been cloned and it too is expressed early in the mesodermal germ layer. We have isolated cDNA clones of a mouse gene (termed Sna) closely related to snail and xsnail and another Drosophila gene termed escargot that also encodes a zinc-finger protein. Sna encodes a 264 amino acid protein that contains four zinc fingers. Developmental RNA blot analysis showed that Sna transcripts are expressed throughout postimplantation development. Analysis of the spatial and temporal localization of Sna transcripts by in situ hybridization to both whole-mount and sectioned embryos revealed that, in the gastrulating embryo, Sna is expressed throughout the primitive streak and in the entire mesodermal germ layer. By 9.5 days post coitum (dpc) Sna is expressed at high levels in cephalic neural crest and limb bud mesenchyme. In fact, by 10.5 dpc Sna expression is observed in most mesenchymal cells, whether of neural crest or mesodermal origin. Later in gestation, high levels of Sna expression are observed in condensing cartilage and in the mesenchymal component of several tissues (lung, kidney, teeth and vibrissae) that undergo epithelial-mesenchymal inductive interactions during development. These results suggest multiple roles for the Sna gene in gastrulation and organogenesis during murine development.


2004 ◽  
Vol 24 (14) ◽  
pp. 6445-6455 ◽  
Author(s):  
Deborah J. Stumpo ◽  
Noah A. Byrd ◽  
Ruth S. Phillips ◽  
Sanjukta Ghosh ◽  
Robert R. Maronpot ◽  
...  

ABSTRACT The mouse gene Zfp36L1 encodes zinc finger protein 36-like 1 (Zfp36L1), a member of the tristetraprolin (TTP) family of tandem CCCH finger proteins. TTP can bind to AU-rich elements within the 3′-untranslated regions of the mRNAs encoding tumor necrosis factor (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), leading to accelerated mRNA degradation. TTP knockout mice exhibit an inflammatory phenotype that is largely due to increased TNF secretion. Zfp36L1 has activities similar to those of TTP in cellular RNA destabilization assays and in cell-free RNA binding and deadenylation assays, suggesting that it may play roles similar to those of TTP in mammalian physiology. To address this question we disrupted Zfp36L1 in mice. All knockout embryos died in utero, most by approximately embryonic day 11 (E11). Failure of chorioallantoic fusion occurred in about two-thirds of cases. Even when fusion occurred, by E10.5 the affected placentas exhibited decreased cell division and relative atrophy of the trophoblast layers. Although knockout embryos exhibited neural tube abnormalities and increased apoptosis within the neural tube and also generalized runting, these and other findings may have been due to deficient placental function. Embryonic expression of Zfp36L1 at E8.0 was greatest in the allantois, consistent with a potential role in chorioallantoic fusion. Fibroblasts derived from knockout embryos had apparently normal levels of fully polyadenylated compared to deadenylated GM-CSF mRNA and normal rates of turnover of this mRNA species, both sensitive markers of TTP deficiency in cells. We postulate that lack of Zfp36L1 expression during mid-gestation results in the abnormal stabilization of one or more mRNAs whose encoded proteins lead directly or indirectly to abnormal placentation and fetal death.


Sign in / Sign up

Export Citation Format

Share Document