Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation

Development ◽  
1998 ◽  
Vol 125 (16) ◽  
pp. 3247-3258 ◽  
Author(s):  
K.L. Kroll ◽  
A.N. Salic ◽  
L.M. Evans ◽  
M.W. Kirschner

In an expression cloning screen in Xenopus embryos, we identified a gene that when overexpressed expanded the neural plate at the expense of adjacent neural crest and epidermis. This gene, which we named geminin, had no sequence similarity to known gene families. We later discovered that geminin's neuralizing domain was part of a bifunctional protein whose C-terminal coiled-coil domain may play a role in regulating DNA replication. We report here on the neuralizing function of geminin. The localization, effect of misexpression and activity of a dominant negative geminin suggest that the product of this gene has an essential early role in specifying neural cell fate in vertebrates. Maternal geminin mRNA is found throughout the animal hemisphere from oocyte through late blastula. At the early gastrula, however, expression is restricted to a dorsal ectodermal territory that prefigures the neural plate. Misexpression of geminin in gastrula ectoderm suppresses BMP4 expression and converts prospective epidermis into neural tissue. In ectodermal explants, geminin induces expression of the early proneural gene neurogenin-related 1 although not itself being induced by that gene. Later, embryos expressing geminin have an expanded dorsal neural territory and ventral ectoderm is converted to neurons. A putative dominant negative geminin lacking the neuralizing domain suppresses neural differentiation and, when misexpressed dorsally, produces islands of epidermal gene expression within the neurectodermal territory, effects that are rescued by coexpression of the full-length molecule. Taken together, these data indicate that geminin plays an early role in establishing a neural domain during gastrulation.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Chunnian Zhao ◽  
GuoQiang Sun ◽  
Peng Ye ◽  
Shengxiu Li ◽  
Yanhong Shi




2012 ◽  
Vol 84 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Svetlana Gavrilov ◽  
Thomas G. Nührenberg ◽  
Anthony W. Ashton ◽  
Chang-Fu Peng ◽  
Jennifer C. Moore ◽  
...  


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 67-86
Author(s):  
T. A. Dettlaff

In both the ectodermal and the chordamesodermal regions of Anuran embryos, the outer layer of cells possesses epithelial properties and has the same restricted morphogenetic potencies. It is thus interchangeable between the regions, capable of epiboly and, when underlain by notochord material, of the formation of bottle-shaped cells as at the blastoporal groove, and invagination. When taken from the chordamesoderm region, this outer layer has no inducing effect on the ectoderm of the early gastrula. In normal development the outer layer of the neural plate takes an active part in forming the neural tube cavity. It gives rise to the neuroepithelial roof of the diencephalon and medulla oblongata and, when underlain by neuroblasts that develop from the inner cell layers, to ependymal cells of the brain wall. The outer layer of the notochord material is included in the epithelial layer underlying the roof of the gastrocoel - the hypochordal plate. The inner layers of these regions consist of loosely arranged cells and normally have no epithelial properties although, when taken from the ectoderm region, they may acquire such properties upon long-term contact with the environment. However they have wide morphogenetic potencies; the differences in these potencies between cells taken from the various presumptive regions being less than the differences between outer and inner cell layers in each region. Maps are provided which show the arrangement of presumptive rudiments in the ectoderm and chordamesoderm on sagittal sections through Bombina bombina embryos in early and late gastrulation.



Development ◽  
1993 ◽  
Vol 119 (4) ◽  
pp. 1055-1065 ◽  
Author(s):  
J. Winick ◽  
T. Abel ◽  
M.W. Leonard ◽  
A.M. Michelson ◽  
I. Chardon-Loriaux ◽  
...  

The GATA transcription factors are a family of C4 zinc finger-motif DNA-binding proteins that play defined roles in hematopoiesis as well as presumptive roles in other tissues where they are expressed (e.g., testis, neuronal and placental trophoblast cells) during vertebrate development. To investigate the possibility that GATA proteins may also be involved in Drosophila development, we have isolated and characterized a gene (dGATAa) encoding a factor that is quite similar to mammalian GATA factors. The dGATAa protein sequence contains the two zinc finger DNA-binding domain of the GATA class but bears no additional sequence similarity to any of the vertebrate GATA factors. Analysis of dGATAa gene transcription during Drosophila development revealed that its mRNA is expressed at high levels during early embryogenesis, with transcripts first appearing in the dorsal portion of the embryo just after cellularization. As development progresses, dGATAa mRNA is present at high levels in the dorsal epidermis, suggesting that dGATAa may be involved in determining dorsal cell fate. The pattern of expression in a variety of dorsoventral polarity mutants indicates that dGATAa lies downstream of the zygotic patterning genes decapentaplegic and zerknullt.



2011 ◽  
Vol 24 (10) ◽  
pp. 1132-1142 ◽  
Author(s):  
Guangcun Li ◽  
Sanwen Huang ◽  
Xiao Guo ◽  
Ying Li ◽  
Yu Yang ◽  
...  

Massive resistance (R) gene stacking is considered to be one of the most promising approaches to provide durable resistance to potato late blight for both conventional and genetically modified breeding strategies. The R3 complex locus on chromosome XI in potato is an example of natural R gene stacking, because it contains two closely linked R genes (R3a and R3b) with distinct resistance specificities to Phytophthora infestans. Here, we report about the positional cloning of R3b. Both transient and stable transformations of susceptible tobacco and potato plants showed that R3b conferred full resistance to incompatible P. infestans isolates. R3b encodes a coiled-coil nucleotide-binding site leucine-rich repeat protein and exhibits 82% nucleotide identity with R3a located in the same R3 cluster. The R3b gene specifically recognizes Avr3b, a newly identified avirulence factor from P. infestans. R3b does not recognize Avr3a, the corresponding avirulence gene for R3a, showing that, despite their high sequence similarity, R3b and R3a have clearly distinct recognition specificities. In addition to the Rpi-mcd1/Rpi-blb3 locus on chromosome IV, the R3 locus on chromosome XI is the second example of an R-gene cluster with multiple genes recognizing different races of P. infestans.



2003 ◽  
Vol 259 (1) ◽  
pp. 150-161 ◽  
Author(s):  
Jun Motoyama ◽  
Ljiljana Milenkovic ◽  
Mizuho Iwama ◽  
Yayoi Shikata ◽  
Matthew P. Scott ◽  
...  


2021 ◽  
Author(s):  
Richard G Dorrell ◽  
Alan Kuo ◽  
Zoltan Fussy ◽  
Elisabeth H Richardson ◽  
Asaf Salamov ◽  
...  

The Arctic Ocean is being impacted by warming temperatures, increasing freshwater and highly variable ice conditions. The microalgal communities underpinning Arctic marine food webs, once thought to be dominated by diatoms, include a phylogenetically diverse range of small algal species, whose biology remains poorly understood. Here, we present genome sequences of a cryptomonad, a haptophyte, a chrysophyte, and a pelagophyte, isolated from the Arctic water column and ice. Comparing protein family distributions and sequence similarity across a densely-sampled set of algal genomes and transcriptomes, we note striking convergences in the biology of distantly related small Arctic algae, compared to non-Arctic relatives; although this convergence is largely exclusive of Arctic diatoms. Using high-throughput phylogenetic approaches, incorporating environmental sequence data from Tara Oceans, we demonstrate that this convergence was partly explained by horizontal gene transfers (HGT) between Arctic species, in over at least 30 other discrete gene families, and most notably in ice-binding domains (IBD). These Arctic-specific genes have been repeatedly transferred between Arctic algae, and are independent of equivalent HGTs in the Antarctic Southern Ocean. Our data provide insights into the specialised Arctic marine microbiome, and underlines the role of geographically-limited HGT as a driver of environmental adaptation in eukaryotic algae.



1999 ◽  
Vol 19 (10) ◽  
pp. 6500-6508 ◽  
Author(s):  
Nanette J. Pazdernik ◽  
David B. Donner ◽  
Mark G. Goebl ◽  
Maureen A. Harrington

ABSTRACT The death domain-containing receptor superfamily and their respective downstream mediators control whether or not cells initiate apoptosis or activate NF-κB, events critical for proper immune system function. A screen for upstream activators of NF-κB identified a novel serine-threonine kinase capable of activating NF-κB and inducing apoptosis. Based upon domain organization and sequence similarity, this novel kinase, named mRIP3 (mouse receptor interacting protein 3), appears to be a new RIP family member. RIP, RIP2, and mRIP3 contain an N-terminal kinase domain that share 30 to 40% homology. In contrast to the C-terminal death domain found in RIP or the C-terminal caspase-recruiting domain found in RIP2, the C-terminal tail of mRIP3 contains neither motif and is unique. Despite this feature, overexpression of the mRIP3 C terminus is sufficient to induce apoptosis, suggesting that mRIP3 uses a novel mechanism to induce death. mRIP3 also induced NF-κB activity which was inhibited by overexpression of either dominant-negative NIK or dominant-negative TRAF2. In vitro kinase assays demonstrate that mRIP3 is catalytically active and has autophosphorylation site(s) in the C-terminal domain, but the mRIP3 catalytic activity is not required for mRIP3 induced apoptosis and NF-κB activation. Unlike RIP and RIP2, mRIP3 mRNA is expressed in a subset of adult tissues and is thus likely to be a tissue-specific regulator of apoptosis and NF-κB activity. While the lack of a dominant-negative mutant precludes linking mRIP3 to a known upstream regulator, characterizing the expression pattern and the in vitro functions of mRIP3 provides insight into the mechanism(s) by which cells modulate the balance between survival and death in a cell-type-specific manner.



2021 ◽  
Vol 17 (6) ◽  
pp. e1009077
Author(s):  
Yuchi Qiu ◽  
Lianna Fung ◽  
Thomas F. Schilling ◽  
Qing Nie

The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development.



Sign in / Sign up

Export Citation Format

Share Document