The lines gene of Drosophila is required for specific functions of the Abdominal-B HOX protein

Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1269-1274 ◽  
Author(s):  
J. Castelli-Gair

The Hox genes encode homeobox transcription factors that control the formation of segment specific structures in the anterior-posterior axis. HOX proteins regulate the transcription of downstream targets acting both as repressors and as activators. Due to the similarity of their homeoboxes it is likely that much of the specificity of HOX proteins is determined by interaction with transcriptional cofactors, but few HOX cofactor proteins have yet been described. Here I present genetic evidence showing that lines, a segment polarity gene of Drosophila, is required for the function of the Abdominal-B protein. In lines mutant embryos Abdominal-B protein expression is normal but incapable of promoting its normal functions: formation of the posterior spiracles and specification of an eighth abdominal denticle belt. These defects arise because in lines mutant embryos the Abdominal-B protein cannot activate its direct target empty spiracles or other downstream genes while it can function as a repressor of Ultrabithorax and abdominal-A. The lines gene seems to be required exclusively for Abdominal-B but not for the function of other Hox genes.

Development ◽  
2020 ◽  
Vol 148 (1) ◽  
pp. dev193813
Author(s):  
Alejandra C. López-Delgado ◽  
Irene Delgado ◽  
Vanessa Cadenas ◽  
Fátima Sánchez-Cabo ◽  
Miguel Torres

ABSTRACTVertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3467-3475 ◽  
Author(s):  
P.A. Nambu ◽  
J.R. Nambu

We describe the isolation and analysis of the Drosophila fish-hook (fish) gene, which encodes a novel member of the SOX subgroup of High Mobility Group (HMG) domain proteins that exhibit similarity to the mammalian testis determining factor, SRY. The fish gene is initially expressed in a pair-rule-like pattern which is rapidly replaced by strong neuroectoderm expression. fish null mutants exhibit severe segmentation defects, including loss and/or fusion of abdominal denticle belts and stripe-specific defects in pair-rule and segment polarity gene expression.fish mutant embryos also exhibit loss of specific neurons, fusion of adjacent ventral nerve cord ganglia and aberrant axon scaffold organization. These results indicate an essential role for fish in anterior/posterior pattern formation and nervous system development, and suggest a potential function in modulating the activities of gap and pair-rule proteins.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.L. Felsenfeld ◽  
J.A. Kennison

We describe a dominant gain-of-function allele of the segment polarity gene hedgehog. This mutation causes ectopic expression of hedgehog mRNA in the anterior compartment of wing discs, leading to overgrowth of tissue in the anterior of the wing and partial duplication of distal wing structures. The posterior compartment of the wing is unaffected. Other imaginal derivatives are affected, resulting in duplications of legs and antennae and malformations of eyes. In mutant imaginal wing discs, expression of the decapentaplegic gene, which is implicated in the hedgehog signaling pathway, is also perturbed. The results suggest that hedgehog protein acts in the wing as a signal to instruct neighboring cells to adopt fates appropriate to the region of the wing just anterior to the compartmental boundary.


Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Craig A. Micchelli ◽  
Inge The ◽  
Erica Selva ◽  
Vladic Mogila ◽  
Norbert Perrimon

Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 489-497 ◽  
Author(s):  
N.E. Baker

Wingless (wg) is a segment-polarity gene in Drosophila which is related to the murine proto-oncogene int1. In Drosophila embryos, wg transcription defines part of each parasegment. In situ hybridization shows that wg is also expressed in the imaginal discs which give rise to the adult during metamorphosis. Transcripts are localized in the apical cytoplasm of disc cells, and accumulate in different patterns in dorsal and ventral discs. The wgCX3 mutation produces morphological defect in the adult structures derived from these imaginal discs. The results show that wg is involved in the development of the adult, as well as the embryo, but that the imaginal discs do not express this segment-polarity gene in an identical pattern to the embryonic segments.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1029-1043 ◽  
Author(s):  
M. Peifer ◽  
C. Rauskolb ◽  
M. Williams ◽  
B. Riggleman ◽  
E. Wieschaus

The segment polarity genes of Drosophila were initially defined as genes required for pattern formation within each embryonic segment. Some of these genes also function to establish the pattern of the adult cuticle. We have examined the role of the armadillo (arm) gene in this latter process. We confirmed and extended earlier findings that arm and the segment polarity gene wingless are very similar in their effects on embryonic development. We next discuss the role of arm in pattern formation in the imaginal discs, as determined by using a pupal lethal allele, by analyzing clones of arm mutant tissue in imaginal discs, and by using a transposon carrying arm to produce adults with a reduced level of arm. Together, these experiments established that arm is required for the development of all imaginal discs. The requirement for arm varies along the dorsal-ventral and proximal-distal axes. Cells that require the highest levels of arm are those that express the wingless gene. Further, animals with reduced arm levels have phenotypes that resemble those of weak alleles of wingless. We present a description of the patterns of arm protein accumulation in imaginal discs. Finally, we discuss the implications of these results for the role of arm and wingless in pattern formation.


Sign in / Sign up

Export Citation Format

Share Document