scholarly journals Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev192849
Author(s):  
Evan M. Ratzan ◽  
Anne M. Moon ◽  
Michael R. Deans

ABSTRACTFGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.

2017 ◽  
Vol 423 (2) ◽  
pp. 126-137 ◽  
Author(s):  
Jeremy S. Duncan ◽  
Michelle L. Stoller ◽  
Andrew F. Francl ◽  
Fadel Tissir ◽  
Danelle Devenport ◽  
...  

Genomics ◽  
2006 ◽  
Vol 87 (6) ◽  
pp. 801-808 ◽  
Author(s):  
R. David Hawkins ◽  
Cynthia A. Helms ◽  
Julia B. Winston ◽  
Mark E. Warchol ◽  
Michael Lovett

Development ◽  
2007 ◽  
Vol 134 (24) ◽  
pp. 4405-4415 ◽  
Author(s):  
S. Raft ◽  
E. J. Koundakjian ◽  
H. Quinones ◽  
C. S. Jayasena ◽  
L. V. Goodrich ◽  
...  

1997 ◽  
Vol 3 (S2) ◽  
pp. 173-174
Author(s):  
R. Friedman ◽  
N. Paradies ◽  
S. Wert ◽  
T. Doetschman ◽  
E.L. Cardell

Transforming growth factor beta (TGFß) genes are linked to a variety of developmental processes and are the subject of in vivo and in vitro transgene research studies. We are evaluating TGFß-2 effects on mouse inner ear development, with emphasis on the cochlear duct (CD), by comparing plastic sections of intact inner ears from developmental day (D) 16.5,18.5 and 19.5 littermates with wildtype (+/+), heterozygous (+/−) and mutant (−/−) TGFß-2 genotypes as determined by polymerase chain reaction analysis of tail digests. Auditory and vestibular organs of all D16.5 mice appear similar: membranous labyrinth epithelium varies from simple cuboidal/low columnar to pseudostratified/stratified columnar. Surrounding mesenchyme varies in cell density regionally, the most cellular mesenchyme underlies areas of sensory epithelium. Sparse mesenchymal cell distribution in the vestibule and basal CD indicates sites of perilymph channel formation. The spiral and vestibular ganglia and their unmyelinated fibers are prominent. Otoconia and hair cells are present in the utricle (U) and saccule (S) maculae; hair cells are less easily identifiable in the CD.


Biology Open ◽  
2017 ◽  
Vol 6 (9) ◽  
pp. 1270-1278 ◽  
Author(s):  
Simone Schwarzer ◽  
Sandra Spieß ◽  
Michael Brand ◽  
Stefan Hans

Sign in / Sign up

Export Citation Format

Share Document