scholarly journals Mechanisms underlying the cooperation between loss of epithelial polarity and Notch signaling during neoplastic growth in Drosophila

Development ◽  
2022 ◽  
Author(s):  
Rémi Logeay ◽  
Charles Géminard ◽  
Patrice Lassus ◽  
Miriam Rodríguez-Vázquez ◽  
Diala Kantar ◽  
...  

Aggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant). We show that the scrib mutation impacts the direct transcriptional output of the Notch pathway, without altering the global distribution of Su(H), the Notch dedicated transcription factor. The Notch-dependent neoplasms require however, the action of a group of transcription factors, similar to those previously identified for Ras/scrib neoplasm (namely AP-1, Stat92E, Ftz-F1, and bZIP factors), further suggesting the importance of this transcription factor network during neoplastic growth. Finally our work highlights some Notch/scrib specificities, in particular the role of the PAR domain containing bZIP transcription factor and Notch direct target Pdp1 for neoplastic growth.

2020 ◽  
Author(s):  
Rémi Logeay ◽  
Charles Géminard ◽  
Patrice Lassus ◽  
Diala Kantar ◽  
Lisa Héron-Milhavet ◽  
...  

SUMMARYAggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells and show that epithelial polarity changes directly impact the transcriptional output of the Notch pathway. Importantly, we show that this Notch pathway redirection is not mediated by a redeployment of Su(H), the Notch dedicated transcription factor, but relies on the cooperation with a combination of oncogenic transcription factors. Our work highlights in particular the role of the stress response CEBPG homologue CG6272/Irbp18 and of its partner Xrp1 suggesting that parts of the cellular competition program might promote neoplastic growth.


Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1962-P
Author(s):  
TAKUYA MINAMIZUKA ◽  
YOSHIRO MAEZAWA ◽  
HARUHIDE UDAGAWA ◽  
YUSUKE BABA ◽  
MASAYA KOSHIZAKA ◽  
...  

2017 ◽  
Vol 63 (4) ◽  
pp. 545-556
Author(s):  
Natalya Oskina ◽  
Aleksandr Shcherbakov ◽  
Maksim Filipenko ◽  
Nikolay Kushlinskiy ◽  
L. Ovchinnikova

Currently it is established that cancer is a genetic disease and that somatic mutations are the initiators of the carcinogenic process. The PI3K/AKT/mTOR pathway is an important intracellular signaling pathway regulating the cell growth and metabolic activities. Aberrant activation of the PI3K pathway is commonly observed in many different cancers. In this review we analyze the genetic alterations of PI3K pathway in a variety of human malignancies and discuss their possible implications for diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document