Faculty Opinions recommendation of Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids.

Author(s):  
Joseph Avruch
Keyword(s):  
Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1962-P
Author(s):  
TAKUYA MINAMIZUKA ◽  
YOSHIRO MAEZAWA ◽  
HARUHIDE UDAGAWA ◽  
YUSUKE BABA ◽  
MASAYA KOSHIZAKA ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 23.2-24
Author(s):  
Y. P. Tsao ◽  
F. Y. Tseng ◽  
C. W. Chao ◽  
M. H. Chen ◽  
S. T. Chen

Background:Systemic lupus erythematous (SLE) is a systemic autoimmune disease with diverse etiological factors. It was recognized that interferon (IFN) signature involved in the progress of SLE. NLRP12 (NOD-like receptor family (NLR) pyrin domain containing 12) is a pyrin containing NLR protein that we had linked its new biological function to the cross-regulation of Toll like receptor (TLRs) and Rig-I like receptor (RIG-I) pathways. NLPR12 acts as an innate immune check-point in regulating type I IFNs expression during TLRs and RIG-I activation. The importance of NLRP12 in lupus disease activity remained to be elucidated.Objectives:To clarify the role of NLRP12 in regulating the interferon signature.Methods:Peripheral blood mononuclear cells (PBMCs) were collected from SLE patients and healthy donors for analysis of NLRP12 and IFN-α gene expression by RT-QPCR. PBMCs were applied for Chromatin immuneprecipitation (ChIP) assay and electrical mobility shift assay (EMSA) to determine the putative transcription factor that regulates NLRP12 expression. An involvement of epigenetic regulation of NLRP12 expression in SLE patients was also analyzed. Bone marrow derived dendritic cells (BMDCs) were collected from wild type mouse and Nlrp12 knocked-out mice. Another CD14+ monocytes were isolated from 10 cases of lupus patients and 8 cases of healthy control, following by stimulating different type of nucleic acids, and IFN-α and IL-6 were measured with ELISA assay. CD14+ monocytes in lupus patients were also pre-treated with IFNAR2 antibody for further nucleic acid stimulation. Two mice models were applied for evaluation the role of Nlrp12: intraperitoneal injection of TMPD (2,6,10,14-tetramethylpentadecane, or pristane) in C57BL/6 mice and Faslpr mice. Both models were conducted with and without Nlrp12 knockout.Results:NLRP12 expression was significantly lower in PBMC isolated from SLE patients compared to healthy donors. The inverse correlation was observed in NLRP12 and IFNA gene expression as well as NLRP12 expression and amount of double-stranded DNA autoantibody in SLE patients. NLRP12 expression showed negative correlations with IFN-α treatment, as well as herpes simplex virus-1 (HSV-1) infection. Results from ChIP and EMSA analysis indicated a potential transcription factor 1 (TF-1) regulating NLRP12 promoter activity. TF-1 lead to transcriptional suppression of NLRP12 in SLE PBMC, and it was gradually induced after IFN treatment. Recruitment of TF-1 to NLRP12 promoter in SLE PBMC compared to the healthy PBMC was detected, and increased when treating with IFN. Human CD14+ monocytes collected from lupus and healthy control stimulating with different type of nucleic acids revealing significant increasing level of IFN-α and IL-6 in lupus patients. Among animal models, both pristine induced mice and Faslpr mice revealed increasing autoantibodies production and severity of glomerulonephritis in Nlrp12-/- group in comparison with Nlrp12+/+ ones, indicating the role of NLRP12 in maintaining positive interferon signature as well as disease activity.Conclusion:Expression level of NLRP1.2 has been demonstrated to be a biomarker of disease activity in SLE patients. The NLRP12 was involved in the interferon signature, which was also negatively regulated by TF-1. Both clinical samples and animal models revealed NLRP12 in maintaining the positive interferon signature, indicating the possible role of exacerbating factor for lupus disease activity.Disclosure of Interests:None declared


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Xiao ◽  
Devin P. Merullo ◽  
Therese M. I. Koch ◽  
Mou Cao ◽  
Marissa Co ◽  
...  

AbstractDisruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.


Sign in / Sign up

Export Citation Format

Share Document