THE ROLE OF PHOSPHATIDYLINOSITOL-3-KINASE IN CARCINOGENESIS

2017 ◽  
Vol 63 (4) ◽  
pp. 545-556
Author(s):  
Natalya Oskina ◽  
Aleksandr Shcherbakov ◽  
Maksim Filipenko ◽  
Nikolay Kushlinskiy ◽  
L. Ovchinnikova

Currently it is established that cancer is a genetic disease and that somatic mutations are the initiators of the carcinogenic process. The PI3K/AKT/mTOR pathway is an important intracellular signaling pathway regulating the cell growth and metabolic activities. Aberrant activation of the PI3K pathway is commonly observed in many different cancers. In this review we analyze the genetic alterations of PI3K pathway in a variety of human malignancies and discuss their possible implications for diagnosis and therapy.

2021 ◽  
Vol 22 (7) ◽  
pp. 3464
Author(s):  
Rosalin Mishra ◽  
Hima Patel ◽  
Samar Alanazi ◽  
Mary Kate Kilroy ◽  
Joan T. Garrett

The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.


2014 ◽  
Vol 222 (1) ◽  
pp. R11-R24 ◽  
Author(s):  
Syed Jalal Khundmiri

Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na+/K+ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na+/K+ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na+/K+ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na+/K+ATPase activity, cell signaling, and blood pressure regulation.


Author(s):  
Haniyeh Gaffari-Nazari ◽  
Samira Karami ◽  
Leila Noorazar ◽  
Sayeh Parkhideh ◽  
Elham Roshandel ◽  
...  

Background: The PI3K/Akt/mTOR signaling pathway is one of the most important intracellular signaling pathways by regulating the cell cycle process. The direct relationship of this pathway with important mechanisms such as cell quiescence, longevity, and proliferation has been established. The overactive PI3K pathway with decreased and increased apoptosis and cell proliferation respectively is involved in pathogenesis of many cancers, including blood malignancies such as leukemia. Methods: Laboratory findings have shown that different factors, such as miRNAs, play a role in regulating PI3K signaling pathway. These molecules can alter the fate of a cell by interfering in suppression/overexpression of mRNA, transcription factors or stimulating the transcription of some genes. In this article, we reviewed the role of miRNAs in regulating the PI3K/Akt/mTOR pathway and its effect on leukemic progression and treatment failure. Conclusion: At present, miRNAs are known to be one of the causes of treatment failure and relapse in cancers.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 38 ◽  
Author(s):  
Nicolas Ricard ◽  
Jiasheng Zhang ◽  
Zhen W. Zhuang ◽  
Michael Simons

Despite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global Erk1 knockout as well as Erk1 and Erk2 floxed mice to delete Erk1 or Erk2 in endothelial cells, macrophages, and smooth muscle cells. We found that ERK1 controls macrophage infiltration following an ischemic event. Loss of ERK1 in endothelial cells and macrophages induced an excessive macrophage infiltration leading to an increased but poorly functional arteriogenesis. Loss of ERK2 in endothelial cells leads to a decreased arteriogenesis due to decreased endothelial cell proliferation and a reduced eNOS expression. These findings show for the first time that isoform-specific roles of ERK1 and ERK2 in the control of arteriogenesis.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 353
Author(s):  
Elena Tibaldi ◽  
Enrica Federti ◽  
Alessandro Matte ◽  
Iana Iatcenko ◽  
Anand B. Wilson ◽  
...  

The dynamic coordination between kinases and phosphatases is crucial for cell homeostasis, in response to different stresses. The functional connection between oxidation and the intracellular signaling machinery still remains to be investigated. In the last decade, several studies have highlighted the role of reactive oxygen species (ROS) as modulators directly targeting kinases, phosphatases, and downstream modulators, or indirectly acting on cysteine residues on kinases/phosphatases resulting in protein conformational changes with modulation of intracellular signaling pathway(s). Translational studies have revealed the important link between oxidation and signal transduction pathways in hematological disorders. The intricate nature of intracellular signal transduction mechanisms, based on the generation of complex networks of different types of signaling proteins, revealed the novel and important role of phosphatases together with kinases in disease mechanisms. Thus, therapeutic approaches to abnormal signal transduction pathways should consider either inhibition of overactivated/accumulated kinases or homeostatic signaling resetting through the activation of phosphatases. This review discusses the progress in the knowledge of the interplay between oxidation and cell signaling, involving phosphatase/kinase systems in models of globally distributed hematological disorders.


2011 ◽  
Vol 300 (6) ◽  
pp. H2169-H2176 ◽  
Author(s):  
Yan Xue ◽  
Nan-Lin Li ◽  
Jing-Yue Yang ◽  
Yan Chen ◽  
Lu-Lu Yang ◽  
...  

We have previously demonstrated the roles of RhoA, Rac1, and Cdc42 in hypoxia-driven angiogenesis. However, the role of oncogenes in hypoxia signaling is poorly understood. Given the importance of Rho proteins in the hypoxic response, we hypothesized that Rho family members could act as mediators of hypoxic signal transduction. We investigated the cross-talk between hypoxia and oncogene-driven signal transduction pathways and explored the role of Rac1 on hypoxia-induced hypoxia-inducible factor (HIF)-1α and VEGF expression. Since the phosphatidylinositol 3′-kinase (PI3K) pathway is involved in signal transduction of many oncogenes, we explored the role of PI3K on Rac1-mediated expression of HIF-1α and VEGF in hypoxia. We showed that LY-294002, a PI3K inhibitor, suppressed HIF-1α and VEGF induction under hypoxic conditions by up to 50%. Activation of Rac1 resulted in an upregulation of hypoxia-induced HIF-1α expression, which was blocked by LY-294002. These data suggested that Rac1 is an intermediate in the PI3K-mediated induction of HIF-1α. Interestingly, there was a significant downregulation of the tumor suppressor genes p53 and von Hippel-Lindau tumor suppressor (VHL) in cells expressing a constitutively active form of Rac1. Rac1-mediated inhibition of p53 and VHL could therefore be implicated in the upregulation of HIF-1α expression.


2015 ◽  
Vol 100 (10) ◽  
pp. E1270-E1279 ◽  
Author(s):  
Damien Bouvier ◽  
Marion Rouzaire ◽  
Geoffroy Marceau ◽  
Cécile Prat ◽  
Bruno Pereira ◽  
...  

Context: During pregnancy, aquaporins (AQPs) expressed in fetal membranes are essential for controlling the homeostasis of the amniotic volume, but their regulation by insulin was never explored in diabetic women. Objective: The aim of our study was to investigate the involvement of AQPs 1, 3, 8, and 9 expressed in fetal membranes in diabetic parturient women and the control of their expression by insulin. Design and Participants: From 129 fetal membranes in four populations (controls, type 1, type 2 [T2D], and gestational diabetes [GD]), we established an expression AQP profile. In a second step, the amnion was used to study the control of the expression and functions of AQPs 3 and 9 by insulin. Main Outcomes and Measures: The expression of transcripts and proteins of AQPs was studied by quantitative RT-PCR and ELISA. We analyzed the regulation by insulin of the expression of AQPs 3 and 9 in the amnion. A tritiated glycerol test enabled us to measure the impact of insulin on the functional characteristics. Using an inhibitor of phosphatidylinositol 3-kinase, we analyzed the insulin intracellular signaling pathway. Results: The expression of AQP3 protein was significantly weaker in groups T2D and GD. In nondiabetic fetal membranes, we showed for the amnion (but not for the chorion) a significant repression by insulin of the transcriptional expression of AQPs 3 and 9, which was blocked by a phosphatidylinositol 3-kinase inhibitor. Conclusion: In fetal membranes, the repression of AQP3 protein expression and functions observed in vivo is allowed by the hyperinsulinism described in pregnant women with T2D or GD.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4503-4510 ◽  
Author(s):  
Jennifer L. Moody ◽  
Lixin Xu ◽  
Cheryl D. Helgason ◽  
Frank R. Jirik

Abstract The myeloproliferative disorder of mice lacking the Src homology 2 (SH2)-containing 5′ phosphoinositol phosphatase, SHIP, underscores the need for closely regulating phosphatidylinositol 3-kinase (PI3K) pathway activity, and hence levels of phosphatidylinositol species during hematopoiesis. The role of the 3′ phosphoinositol phosphatase Pten in this process is less clear, as its absence leads to embryonic lethality. Despite Pten heterozygosity being associated with a lymphoproliferative disorder, we found no evidence of a hematopoietic defect in Pten+/- mice. Since SHIP shares the same substrate (PIP3) with Pten, we hypothesized that the former might compensate for Pten haploinsufficiency in the marrow. Thus, we examined the effect of Pten heterozygosity in SHIP-/- mice, predicting that further dysregulation of PIP3 metabolism would exacerbate the pheno-type of the latter. Indeed, compared with SHIP-/- mice, Pten+/-SHIP-/- animals developed a myelodysplastic phenotype characterized by increased hepatosplenomegaly, extramedullary hematopoiesis, anemia, and thrombocytopenia. Consistent with a marrow defect, clonogenic assays demonstrated reductions in committed myeloid and megakaryocytic progenitors in these animals. Providing further evidence of a Pten+/-SHIP-/- progenitor abnormality, reconstitution of irradiated mice with marrows from these mice led to a marked defect in short-term repopulation of peripheral blood by donor cells. These studies suggest that the regulation of the levels and/or ratios of PI3K-derived phosphoinositol species by these 2 phosphatases is critical to normal hematopoiesis. (Blood. 2004;103:4503-4510)


Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1740-1742 ◽  
Author(s):  
Ingrid Pollet ◽  
Christy J. Opina ◽  
Carla Zimmerman ◽  
Kevin G. Leong ◽  
Fred Wong ◽  
...  

AbstractThe intracellular pathways by which inflammatory mediators transmit their angiogenic signals is not well studied. The effects of a potent inflammatory mediator, bacterial lipopolysaccharide (LPS), are transmitted through Toll-like receptors (TLRs). A major, although not exclusive, LPS/TLR intracellular signaling pathway is routed through TNF (tumor necrosis factor) receptor associated factor 6 (TRAF6). In this report we demonstrate that LPS directly stimulates endothelial sprouting in vitro. By blocking TRAF6 activity using retroviral expression of a dominant-negative TRAF6 in endothelial cells, we show that TRAF6 is absolutely required for the LPS-initiated angiogenic response in vitro and in vivo. Inhibition of either c-Jun N-terminal kinase (JNK) activity or nuclear factor κB (NF-κB) activity, downstream of TRAF6, is sufficient to inhibit LPS-induced endothelial sprouting. In contrast, only inhibition of NF-κB, but not JNK, activity blocks basic fibroblast growth factor (bFGF)–induced angiogenesis. Our findings thus demonstrate a direct endothelial-stimulatory role of LPS in initiating angiogenesis through activation of TRAF6-dependent signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document