The histogenetic potential of neural plate cells of early-somite-stage mouse embryos

Development ◽  
1986 ◽  
Vol 96 (1) ◽  
pp. 183-193
Author(s):  
W. Y. Chan ◽  
P. P. L. Tam

The mesencephalic neural plate of early-somite-stage mouse embryos differentiated underneath the renal capsule to form mostly neural tissues together with other tissues some of which were probably of neural crest cell origin. The capacity to form non-neural tissues such as skeletal tissues and melanocytes was lost at about the 5-somite stage. The lateral areas of the plate tended to form non-neural tissues more than the medial areas. The cephalic neural plate of presomite head-fold-stage embryos differentiated extensively to form both ectodermal and mesodermal tissues. However, upon completion of neurulation, the mesencephalic neuro-epithelium of forelimb-bud-stage embryos gave rise to neural tissues only. Therefore there is a progressive restriction in the histogenetic capacity of the mesencephalic neural plate during neurulation and this could be attributed to the cellular commitment for neural differentiation and the loss of the neural crest cells.

Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 297-307 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 3969-3979 ◽  
Author(s):  
K.B. Artinger ◽  
A.B. Chitnis ◽  
M. Mercola ◽  
W. Driever

In the developing vertebrate nervous system, both neural crest and sensory neurons form at the boundary between non-neural ectoderm and the neural plate. From an in situ hybridization based expression analysis screen, we have identified a novel zebrafish mutation, narrowminded (nrd), which reduces the number of early neural crest cells and eliminates Rohon-Beard (RB) sensory neurons. Mosaic analysis has shown that the mutation acts cell autonomously suggesting that nrd is involved in either the reception or interpretation of signals at the lateral neural plate boundary. Characterization of the mutant phenotype indicates that nrd is required for a primary wave of neural crest cell formation during which progenitors generate both RB sensory neurons and neural crest cells. Moreover, the early deficit in neural crest cells in nrd homozygotes is compensated later in development. Thus, we propose that a later wave can compensate for the loss of early neural crest cells but, interestingly, not the RB sensory neurons. We discuss the implications of these findings for the possibility that RB sensory neurons and neural crest cells share a common evolutionary origin.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 525-538 ◽  
Author(s):  
M.A. Selleck ◽  
M. Bronner-Fraser

We have investigated the lineage and tissue interactions that result in avian neural crest cell formation from the ectoderm. Presumptive neural plate was grafted adjacent to non-neural ectoderm in whole embryo culture to examine the role of tissue interactions in ontogeny of the neural crest. Our results show that juxtaposition of non-neural ectoderm and presumptive neural plate induces the formation of neural crest cells. Quail/chick recombinations demonstrate that both the prospective neural plate and the prospective epidermis can contribute to the neural crest. When similar neural plate/epidermal confrontations are performed in tissue culture to look at the formation of neural crest derivatives, juxtaposition of epidermis with either early (stages 4–5) or later (stages 6–10) neural plate results in the generation of both melanocytes and sympathoadrenal cells. Interestingly, neural plates isolated from early stages form no neural crest cells, whereas those isolated later give rise to melanocytes but not crest-derived sympathoadrenal cells. Single cell lineage analysis was performed to determine the time at which the neural crest lineage diverges from the epidermal lineage and to elucidate the timing of neural plate/epidermis interactions during normal development. Our results from stage 8 to 10+ embryos show that the neural plate/neural crest lineage segregates from the epidermis around the time of neural tube closure, suggesting that neural induction is still underway at open neural plate stages.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1069-1084 ◽  
Author(s):  
T. Lallier ◽  
M. Bronner-Fraser

The mechanisms of neural crest cell interaction with laminin were explored using a quantitative cell attachment assay. With increasing substratum concentrations, an increasing percentage of neural crest cells adhere to laminin. Cell adhesion at all substratum concentrations was inhibited by the CSAT antibody, which recognizes the chick beta 1 subunit of integrin, suggesting that beta 1-integrins mediate neural crest cell interactions with laminin. The HNK-1 antibody, which recognizes a carbohydrate epitope, inhibited neural crest cell attachment to laminin at low coating concentrations (greater than 1 microgram ml-1; Low-LM), but not at high coating concentration of laminin (10 micrograms ml-1; High-LM). Attachment to Low-LM occurred in the absence of divalent cations, whereas attachment to High-LM required greater than 0.1 mM Ca2+ or Mn2+. Neural crest cell adherence to the E8 fragment of laminin, derived from its long arm, was similar to that on intact laminin at high and low coating concentrations, suggesting that this fragment contains the neural crest cell binding site(s). The HNK-1 antibody recognizes a protein of 165,000 Mr which is also found in immunoprecipitates using antibodies against the beta 1 subunit of integrin and is likely to be an integrin alpha subunit or an integrin-associated protein. Our results suggest that the HNK-1 epitope on neural crest cells is present on or associated with a novel or differentially glycosylated form of beta 1-integrin, which recognizes laminin in the apparent absence of divalent cations. We conclude that neural crest cells have at least two functionally independent means of attachment to laminin which are revealed at different substratum concentrations and/or conformations of laminin.


Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 809-816 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

To permit a more detailed analysis of neural crest cell migratory pathways in the chick embryo, neural crest cells were labelled with a nondeleterious membrane intercalating vital dye, DiI. All neural tube cells with endfeet in contact with the lumen, including premigratory neural crest cells, were labelled by pressure injecting a solution of DiI into the lumen of the neural tube. When assayed one to three days later, migrating neural crest cells, motor axons, and ventral root cells were the only cells types external to the neural tube labelled with DiI. During the neural crest cell migratory phase, distinctly labelled cells were found along: (1) a dorsolateral pathway, under the epidermis, as well adjacent to and intercalating through the dermamyotome; and (2) a ventral pathway, through the rostral portion of each sclerotome and around the dorsal aorta as described previously. In contrast to those cells migrating through the sclerotome, labelled cells on the dorsolateral pathway were not segmentally arranged along the rostrocaudal axis. DiI-labelled cells were observed in all truncal neural crest derivatives, including subepidermal presumptive pigment cells, dorsal root ganglia, and sympathetic ganglia. By varying the stage at which the injection was performed, neural crest cell emigration at the level of the wing bud was shown to occur from stage 13 through stage 22. In addition, neural crest cells were found to populate their derivatives in a ventral-to-dorsal order, with the latest emigrating cells migrating exclusively along the dorsolateral pathway.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Development ◽  
1988 ◽  
Vol 103 (4) ◽  
pp. 743-756 ◽  
Author(s):  
H.H. Epperlein ◽  
W. Halfter ◽  
R.P. Tucker

It is generally assumed that in amphibian embryos neural crest cells migrate dorsally, where they form the mesenchyme of the dorsal fin, laterally (between somites and epidermis), where they give rise to pigment cells, and ventromedially (between somites and neural tube), where they form the elements of the peripheral nervous system. While there is agreement about the crest migratory routes in the axolotl (Ambystoma mexicanum), different opinions exist about the lateral pathway in Xenopus. We investigated neural crest cell migration in Xenopus (stages 23, 32, 35/36 and 41) using the X. laevis-X. borealis nuclear marker system and could not find evidence for cells migrating laterally. We have also used immunohistochemistry to study the distribution of the extracellular matrix (ECM) glycoproteins fibronectin (FN) and tenascin (TN), which have been implicated in directing neural crest cells during their migrations in avian and mammalian embryos, in the neural crest migratory pathways of Xenopus and the axolotl. In premigratory stages of the crest, both in Xenopus (stage 22) and the axolotl (stage 25), FN was found subepidermally and in extracellular spaces around the neural tube, notochord and somites. The staining was particularly intense in the dorsal part of the embryo, but it was also present along the visceral and parietal layers of the lateral plate mesoderm. TN, in contrast, was found only in the anterior trunk mesoderm in Xenopus; in the axolotl, it was absent. During neural crest cell migration in Xenopus (stages 25–33) and the axolotl (stages 28–35), anti-FN stained the ECM throughout the embryo, whereas anti-TN staining was limited to dorsal regions. There it was particularly intense medially, i.e. in the dorsal fin, around the neural tube, notochord, dorsal aorta and at the medial surface of the somites (stage 35 in both species). During postmigratory stages in Xenopus (stage 40), anti-FN staining was less intense than anti-TN staining. In culture, axolotl neural crest cells spread differently on FN- and TN-coated substrata. On TN, the onset of cellular outgrowth was delayed for about 1 day, but after 3 days the extent of outgrowth was indistinguishable from cultures grown on FN. However, neural crest cells in 3-day-old cultures were much more flattened on FN than on TN. We conclude that both FN and TN are present in the ECM that lines the neural crest migratory pathways of amphibian embryos at the time when the neural crest cells are actively migrating. FN is present in the embryonic ECM before the onset of neural crest migration.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 96 (2) ◽  
pp. 462-473 ◽  
Author(s):  
R A Rovasio ◽  
A Delouvee ◽  
K M Yamada ◽  
R Timpl ◽  
J P Thiery

Cells of the neural crest participate in a major class of cell migratory events during embryonic development. From indirect evidence, it has been suggested that fibronectin (FN) might be involved in these events. We have directly tested the role of FN in neural crest cell adhesion and migration using several in vitro model systems. Avian trunk neural crest cells adhered readily to purified plasma FN substrates and to extracellular matrices containing cellular FN. Their adhesion was inhibited by antibodies to a cell-binding fragment of FN. In contrast, these cells did not adhere to glass, type I collagen, or to bovine serum albumin in the absence of FN. Neural crest cell adhesion to laminin (LN) was significantly less than to FN; however, culturing of crest cells under conditions producing an epithelioid phenotype resulted in cells that could bind equally as well to LN as to FN. The migration of neural crest cells appeared to depend on both the substrate and the extent of cell interactions. Cells migrated substantially more rapidly on FN than on LN or type I collagen substrates; if provided a choice between stripes of FN and glass or LN, cells migrated preferentially on the FN. Migration was inhibited by antibodies against the cell-binding region of FN, and the inhibition could be reversed by a subsequent addition of exogenous FN. However, the migration on FN was random and displayed little persistence of direction unless cells were at high densities that permitted frequent contacts. The in vitro rate of migration of cells on FN-containing matrices was 50 microns/h, similar to their migration rates along the narrow regions of FN-containing extracellular matrix in migratory pathways in vivo. These results indicate that FN is important for neural crest cell adhesion and migration and that the high cell densities of neural crest cells in the transient, narrow migratory pathways found in the embryo are necessary for effective directional migration.


2001 ◽  
Vol 154 (1) ◽  
pp. 217-230 ◽  
Author(s):  
X. Xu ◽  
W.E.I. Li ◽  
G.Y. Huang ◽  
R. Meyer ◽  
T. Chen ◽  
...  

Connexin 43 (Cx43α1) gap junction has been shown to have an essential role in mediating functional coupling of neural crest cells and in modulating neural crest cell migration. Here, we showed that N-cadherin and wnt1 are required for efficient dye coupling but not for the expression of Cx43α1 gap junctions in neural crest cells. Cell motility was found to be altered in the N-cadherin–deficient neural crest cells, but the alterations were different from that elicited by Cx43α1 deficiency. In contrast, wnt1-deficient neural crest cells showed no discernible change in cell motility. These observations suggest that dye coupling may not be a good measure of gap junction communication relevant to motility. Alternatively, Cx43α1 may serve a novel function in motility. We observed that p120 catenin (p120ctn), an Armadillo protein known to modulate cell motility, is colocalized not only with N-cadherin but also with Cx43α1. Moreover, the subcellular distribution of p120ctn was altered with N-cadherin or Cx43α1 deficiency. Based on these findings, we propose a model in which Cx43α1 and N-cadherin may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.


2019 ◽  
Author(s):  
Karyn Jourdeuil ◽  
Lisa A. Taneyhill

ABSTRACTGap junctions are intercellular channels that allow for the diffusion of small ions and solutes between coupled cells. Connexin 43 (Cx43), also known as Gap Junction Protein α1, is the most broadly expressed gap junction protein in vertebrate development. Cx43 is strongly expressed in premigratory cranial neural crest cells and is maintained throughout the neural crest cell epithelial-to-mesenchymal transition (EMT), but its function in these cells is not known. To this end, we have used a combination of in vivo and ex vivo live imaging with confocal microscopy, immunohistochemistry, and functional assays to assess gap junction formation, and Cx43 function, in chick premigratory cranial neural crest cells. Our results demonstrate that gap junctions exist between chick premigratory and migratory cranial neural crest cells, with Cx43 depletion inhibiting the function of gap junctions. While a reduction in Cx43 levels just prior to neural crest cell EMT did not affect EMT and subsequent emigration of neural crest cells from the neural tube, the size of the premigratory neural crest cell domain was decreased in the absence of any changes in cell proliferation or death. Collectively, these data identify a role for Cx43 within the chick premigratory cranial neural crest cell population prior to EMT and migration.


Sign in / Sign up

Export Citation Format

Share Document