Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction

Development ◽  
1987 ◽  
Vol 99 (3) ◽  
pp. 311-325 ◽  
Author(s):  
C.R. Kintner ◽  
D.A. Melton

We have isolated Xenopus laevis N-CAM cDNA clones and used these to study the expression of N-CAM RNA during neural induction. The results show that the first marked increase in N-CAM RNA levels occurs during gastrulation when mesoderm comes in contact with ectoderm and induces neural development. In situ hybridization results show that the early expression of N-CAM RNA is localized to the neural plate and its later expression is confined to the neural tube. Induction experiments with explanted germ layers show that N-CAM RNA is not expressed in ectoderm unless there is contact with inducing tissue. Together these results suggest an approach to studying how ectoderm is committed to form neural rather than epidermal tissue. Specifically, the data suggest that neural commitment is marked and perhaps mediated by the transcriptional activation of genes, like N-CAM, in the neural ectoderm.

Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 961-975 ◽  
Author(s):  
N. Papalopulu ◽  
C. Kintner

The polymerase chain reaction (PCR) was used to isolated five Xenopus homeobox clones (X-dll1 to 5) that are related to the Drosophila Distal-less (Dll) gene and we propose a subdivision of the vertebrate distal-less gene family according to sequence similarities. cDNA clones were isolated for X-dll2, 3 and 4, and their expression was studied by RNase protection and in situ hybridization. X-dll2, which belongs to a separate subfamily than X-dll3 and 4, is not expressed in the neural ectoderm. X-dll3 and X-dll4, which belong to the same subfamily, have a similar but not identical pattern of expression that is restricted to anterior ectodermal derivatives, namely the ventral forebrain, the cranial neural crest and the cement gland. X-dll3 is also expressed in the olfactory and otic placodes while X-dll4 is expressed in the developing eye. X-dll3 differs from the other Xenopus genes and the previously isolated Dll-related mouse genes, in that localized expression can be detected by in situ hybridization very early in development, in the anterior-transverse ridge of the open neural plate. Based on that early expression pattern, we suggest that X-dll3 marks the rostral-most part of the neural plate, which gives rise to the ventral forebrain. Finally, we have used these Xenopus distal-less genes to show that the anterior neural plate can be induced by signals that spread within the plane of neural ectoderm, indicating that at least the initial steps of forebrain development do not require signals from underlying mesoderm.


2002 ◽  
Vol 2 ◽  
pp. 1147-1166 ◽  
Author(s):  
Sally A. Moody ◽  
Hyun-Soo Je

The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.


Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 779-786 ◽  
Author(s):  
M. Jamrich ◽  
S. Sato

We have isolated three cDNA clones that are preferentially expressed in the cement gland of early Xenopus laevis embryos. These clones were used to study processes involved in the induction of this secretory organ. Results obtained show that the induction of this gland coincides with the process of neural induction. Genes specific for the cement gland are expressed very early in the anterior neural plate of stage-12 embryos. This suggests that the anteroposterior polarity of the neural plate is already established during gastrulation. At later stages of development, two of the three genes have secondary sites of expression. The expression of these genes can be induced in isolated animal caps by incubation in 10 mM-NH4Cl, a treatment that is known to induce cement glands.


Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3649-3655 ◽  
Author(s):  
B. Ferreiro ◽  
C. Kintner ◽  
K. Zimmerman ◽  
D. Anderson ◽  
W.A. Harris

Neural development in Drosophila is promoted by a family of basic helix-loop-helix (bHLH) transcription factors encoded within the Achaete Scute-Complex (AS-C). XASH-3, a Xenopus homolog of the Drosophila AS-C genes, is expressed during neural induction within a portion of the dorsal ectoderm that gives rise to the neural plate and tube. Here, we show that XASH-3, when expressed with the promiscuous binding partner XE12, specifically activates the expression of neural genes in naive ectoderm, suggesting that XASH-3 promotes neural development. Moreover, XASH-3/XE12 RNA injections into embryos lead to hypertrophy of the neural tube. Interestingly, XASH-3 misexpression does not lead to the formation of ectopic neural tissue in ventral regions, suggesting that the domain of XASH proneural function is restricted in the embryo. In contrast to the neural inducer noggin, which permanently activates the NCAM gene, the activation of neural genes by XASH-3/XE12 is not stable in naive ectoderm, yet XASH-3/XE12 powerfully and stably activates NCAM, Neurofilament and type III beta-tubulin gene expression in noggin-treated ectoderm. These results show that the XASH-3 promotes neural development, and suggest that its activity depends on additional factors which are induced in ectoderm by factors such as noggin.


Development ◽  
1990 ◽  
Vol 108 (4) ◽  
pp. 595-604 ◽  
Author(s):  
A. Ruiz i Altaba

The Xenopus laevis homeobox gene Xhox3 is expressed in the axial mesoderm of gastrula and neurula stage embryos. By the late neurula-early tailbud stage, mesodermal expression is no longer detectable and expression appears in the growing tailbud and in neural tissue. In situ hybridization analysis of the expression of Xhox3 in neural tissue shows that it is restricted within the neural tube and the cranial neural crest during the tailbud-early tadpole stages. In late tadpole stages, Xhox3 is only expressed in the mid/hindbrain area and can therefore be considered a marker of anterior neural development. To investigate the mechanism responsible for the anterior-posterior (A-P) regionalization of the neural tissue, the expression of Xhox3 has been analysed in total exogastrula. In situ hybridization analyses of exogastrulated embryos show that Xhox3 is expressed in the apical ectoderm of total exogastrulae, a region that develops in the absence of anterior axial mesoderm. The results provide further support for the existence of a neuralizing signal, which originates from the organizer region and spreads through the ectoderm. Moreover, the data suggest that this neural signal also has a role in A-P patterning the neural ectoderm.


2021 ◽  
Author(s):  
Ruth Williams ◽  
Martyna Lukoseviciute ◽  
Tatjana Sauka-Spengler ◽  
Marianne E Bronner

The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harbouring neural crest and cranial placode progenitors. Here we profile avian epiblast cells as a function of time using single-cell RNA-seq to define transcriptional changes in the emerging ‘neural plate border’. The results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridisation. Developmental trajectory analysis shows that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined lineages.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 813-824 ◽  
Author(s):  
A. Streit ◽  
C.D. Stern ◽  
C. Thery ◽  
G.W. Ireland ◽  
S. Aparicio ◽  
...  

It was previously shown (Roberts, C., Platt, N., Streit, A., Schachner, M. and Stern, C. D. (1991) Development 112, 959–970) that grafts of Hensen's node into chick embryos enhanced and maintain expression of the L5 carbohydrate in neighbouring epiblast cells, and that antibodies against L5 inhibit neural induction by such a graft. We now show that L5 is initially widely expressed in the epiblast, but as neural induction proceeds it gradually becomes confined to and up-regulated in the early neural plate. L5 can therefore be considered as a marker for cells that are competent to respond to neural induction. We also show that Hepatocyte Growth Factor/Scatter Factor (HGF/SF) promotes the expression of L5 by extraembryonic epiblast in collagen gels after overnight culture. Explants cultured for several days in the presence of HGF/SF, as well as explants of prospective neural plate, can differentiate into cells with neuronal morphology expressing neuronal markers. To investigate whether HGF/SF is expressed in the chick embryo at appropriate stages of development, we produced specific cDNA probes and used them for in situ hybridization. We find that at the primitive streak stage, HGF/SF is expressed specifically in Hensen's node. We therefore propose that HGF/SF plays a role during the early steps of neural induction, perhaps by inducing or maintaining the competence of the epiblast to respond to neural inducing signals.


Development ◽  
1999 ◽  
Vol 126 (22) ◽  
pp. 4977-4987 ◽  
Author(s):  
K.A. Barth ◽  
Y. Kishimoto ◽  
K.B. Rohr ◽  
C. Seydler ◽  
S. Schulte-Merker ◽  
...  

Bone morphogenetic proteins (Bmps) are key regulators of dorsoventral (DV) patterning. Within the ectoderm, Bmp activity has been shown to inhibit neural development, promote epidermal differentiation and influence the specification of dorsal neurons and neural crest. In this study, we examine the patterning of neural tissue in mutant zebrafish embryos with compromised Bmp signalling activity. We find that although Bmp activity does not influence anteroposterior (AP) patterning, it does affect DV patterning at all AP levels of the neural plate. Thus, we show that Bmp activity is required for specification of cell fates around the margin of the entire neural plate, including forebrain regions that do not form neural crest. Surprisingly, we find that Bmp activity is also required for patterning neurons at all DV levels of the CNS. In swirl/bmp2b(−) (swr(−)) embryos, laterally positioned sensory neurons are absent whereas more medial interneuron populations are hugely expanded. However, in somitabun(−) (sbn(−)) embryos, which probably retain higher residual Bmp activity, it is the sensory neurons and not the interneurons that are expanded. Conversely, in severely Bmp depleted embryos, both interneurons and sensory neurons are absent and it is the most medial neurons that are expanded. These results are consistent with there being a gradient of Bmp-dependent positional information extending throughout the entire neural and non-neural ectoderm.


1998 ◽  
Vol 111 (11) ◽  
pp. 1545-1554 ◽  
Author(s):  
A.W. Koch ◽  
T.W. Holstein ◽  
C. Mala ◽  
E. Kurz ◽  
J. Engel ◽  
...  

Here we present the cloning, expression and immunocytochemical localization of a novel 24 kDa protein, designated spinalin, which is present in the spines and operculum of Hydra nematocysts. Spinalin cDNA clones were identified by in situ hybridization to differentiating nematocytes. Sequencing of a full-length clone revealed the presence of an N-terminal signal peptide, suggesting that the mature protein is sorted via the endoplasmic reticulum to the post-Golgi vacuole in which the nematocyst is formed. The N-terminal region of spinalin (154 residues) is very rich in glycines (48 residues) and histidines (33 residues). A central region of 35 residues contains 19 glycines, occurring mainly as pairs. For both regions a polyglycine-like structure is likely and this may be stabilized by hydrogen bond-mediated chain association. Similar sequences found in loricrins, cytokeratins and avian keratins are postulated to participate in formation of supramolecular structures. Spinalin is terminated by a basic region (6 lysines out of 15 residues) and an acidic region (9 glutamates and 9 aspartates out of 32 residues). Western blot analysis with a polyclonal antibody generated against a recombinant 19 kDa fragment of spinalin showed that spinalin is localized in nematocysts. Following dissociation of the nematocyst's capsule wall with DTT, spinalin was found in the insoluble fraction containing spines and the operculum. Immunocytochemical analysis of developing nematocysts revealed that spinalin first appears in the matrix but then is transferred through the capsule wall at the end of morphogenesis to form spines on the external surface of the inverted tubule and the operculum.


Development ◽  
1989 ◽  
Vol 107 (4) ◽  
pp. 825-833
Author(s):  
P. Cameron-Curry ◽  
C. Dulac ◽  
N.M. Le Douarin

Expression of the avian antigen SMP (Schwann cell Myelin Protein, Mr 75-80000), first characterized in the PNS with a monoclonal antibody as an early and strictly specific Schwann cell marker, was further studied in the CNS. Comparing SMP immunoreactive areas in the different parts of the CNS with those expressing the Myelin Basic Protein (MBP), we showed a strict colocalisation of both phenotypes. In vitro, MBP+ oligodendrocytes express the surface antigen SMP as well. SMP cellular expression was followed in situ and in culture using nervous tissues from embryos at different stages. We were thus able to detect an early expression of this marker by oligodendroblasts before the first appearance of MBP immunoreactivity. We have also identified a subpopulation of SMP+/MBP- and SMP+/GC- cells, which persists under our culture conditions as precursors remaining in an immature state.


Sign in / Sign up

Export Citation Format

Share Document