Villin-induced growth of microvilli is reversibly inhibited by cytochalasin D

1993 ◽  
Vol 105 (3) ◽  
pp. 765-775 ◽  
Author(s):  
E. Friederich ◽  
T.E. Kreis ◽  
D. Louvard

Villin is an actin-binding protein that is associated with the cytoskeleton of brush border microvilli. In vitro, villin nucleates, caps or severs actin filaments in a Ca(2+)-dependent manner. In the absence of Ca2+, villin organizes microfilaments into bundles. Transfection of a villin-specific cDNA into cultured cells that do not produce this protein results in the growth of long surface microvilli and the reorganization of the underlying actin cytoskeleton. Here we studied the effects of low concentrations of cytochalasin D on the induction of these plasma membrane-actin cytoskeleton specializations. Transfected cells were treated with concentrations of cytochalasin D that prevent the association of actin monomers with the fast-growing end of microfilaments in vitro. In villin-positive cells, cytochalasin D inhibited the growth of microvilli and promoted the formation of rodlet-like actin structures, which were randomly distributed throughout the cytoplasm. The formation of these structures was dependent on large amounts of villin and on the integrity of an actin-binding site located at the carboxy terminus of villin, which is required for microfilament bundling in vitro and for the growth of microvilli in vivo. The effect of cytochalasin D was reversible. The observation of living cells by video-imaging revealed that when cytochalasin D was removed, rapid disassembly of actin rodlets occurred after a lag phase. The present data stress the important role of the plasma membrane in the organization of the actin cytoskeleton and suggest that the extension of the microvillar plasma membrane is dependent on the elongation of microfilaments at their fast-growing end. Inhibition of microfilament elongation near the plasma membrane by cytochalasin D may result in the ‘random’ nucleation of actin filaments throughout the cytoplasm. On the basis of the present data, we propose that villin is involved in the assembly of the microvillar actin bundle by a mechanism that does not prevent monomer association with the preferred end of microfilaments. For instance, villin may stabilize actin filaments by lateral interactions. The functional importance of the carboxy-terminal F-actin binding site in such a mechanism is stressed by the fact that it is required for the formation of F-actin rodlets in cytochalasin D-treated cells. Finally, our data further emphasize the observations that the effects of cytochalasin D in living cells can be modulated by actin-binding proteins.

2006 ◽  
Vol 17 (4) ◽  
pp. 1971-1984 ◽  
Author(s):  
Michael G. Clark ◽  
Joseph Teply ◽  
Brian K. Haarer ◽  
Susan C. Viggiano ◽  
David Sept ◽  
...  

Actin interacting protein 1 (Aip1p) and cofilin cooperate to disassemble actin filaments in vitro and are thought to promote rapid turnover of actin networks in vivo. The precise method by which Aip1p participates in these activities has not been defined, although severing and barbed-end capping of actin filaments have been proposed. To better describe the mechanisms and biological consequences of Aip1p activities, we undertook an extensive mutagenesis of AIP1 aimed at disrupting and mapping Aip1p interactions. Site-directed mutagenesis suggested that Aip1p has two actin binding sites, the primary actin binding site lies on the edge of its N-terminal β-propeller and a secondary actin binding site lies in a comparable location on its C-terminal β-propeller. Random mutagenesis followed by screening for separation of function mutants led to the identification of several mutants specifically defective for interacting with cofilin but still able to interact with actin. These mutants suggested that cofilin binds across the cleft between the two propeller domains, leaving the actin binding sites exposed and flanking the cofilin binding site. Biochemical, genetic, and cell biological analyses confirmed that the actin binding- and cofilin binding-specific mutants are functionally defective, whereas the genetic analyses further suggested a role for Aip1p in an early, internalization step of endocytosis. A complementary, unbiased molecular modeling approach was used to derive putative structures for the Aip1p-cofilin complex, the most stable of which is completely consistent with the mutagenesis data. We theorize that Aip1p-severing activity may involve simultaneous binding to two actin subunits with cofilin wedged between the two actin binding sites of the N- and C-terminal propeller domains.


1992 ◽  
Vol 116 (4) ◽  
pp. 923-931 ◽  
Author(s):  
C Hug ◽  
T M Miller ◽  
M A Torres ◽  
J F Casella ◽  
J A Cooper

A mAb (1E5) that binds the COOH-terminal region of the beta subunit of chicken CapZ inhibits the ability of CapZ to bind the barbed ends of actin filaments and nucleate actin polymerization. CapZ prepared as fusion proteins in bacteria or nonfusion proteins by in vitro translation has activity similar to that of CapZ purified from muscle. Deletion of the COOH-terminus of the beta subunit of CapZ leads to a loss of CapZ's ability to bind the barbed ends of actin filaments. A peptide corresponding to the COOH-terminal region of CapZ beta, expressed as a fusion protein, binds actin monomers. The mAb 1E5 also inhibits the binding of this peptide to actin. These results suggest that the COOH-terminal region of the beta subunit of CapZ is an actin-binding site. The primary structure of this region is not similar to that of potential actin-binding sites identified in other proteins. In addition, the primary structure of this region is not conserved across species.


1989 ◽  
Vol 109 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
H Miyata ◽  
B Bowers ◽  
E D Korn

Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F-actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI-extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP-sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin-binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.


1991 ◽  
Vol 112 (4) ◽  
pp. 665-676 ◽  
Author(s):  
L Eichinger ◽  
A A Noegel ◽  
M Schleicher

Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.


1987 ◽  
Vol 105 (4) ◽  
pp. 1741-1751 ◽  
Author(s):  
L J Wuestehube ◽  
E J Luna

F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.


2012 ◽  
Vol 444 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Keefe T. Chan ◽  
David W. Roadcap ◽  
Nicholas Holoweckyj ◽  
James E. Bear

Dynamic rearrangement of actin filament networks is critical for cell motility, phagocytosis and endocytosis. Coronins facilitate these processes, in part, by their ability to bind F-actin (filamentous actin). We previously identified a conserved surface-exposed arginine (Arg30) in the β-propeller of Coronin 1B required for F-actin binding in vitro and in vivo. However, whether this finding translates to other coronins has not been well defined. Using quantitative actin-binding assays, we show that mutating the equivalent residue abolishes F-actin binding in Coronin 1A, but not Coronin 1C. By mutagenesis and biochemical competition, we have identified a second actin-binding site in the unique region of Coronin 1C. Interestingly, leading-edge localization of Coronin 1C in fibroblasts requires the conserved site in the β-propeller, but not the site in the unique region. Furthermore, in contrast with Coronin 1A and Coronin 1B, Coronin 1C displays highly co-operative binding to actin filaments. In the present study, we highlight a novel mode of coronin regulation, which has implications for how coronins orchestrate cytoskeletal dynamics.


2012 ◽  
Vol 109 (38) ◽  
pp. E2533-E2542 ◽  
Author(s):  
Michal Skruzny ◽  
Thorsten Brach ◽  
Rodolfo Ciuffa ◽  
Sofia Rybina ◽  
Malte Wachsmuth ◽  
...  

Dynamic actin filaments are a crucial component of clathrin-mediated endocytosis when endocytic proteins cannot supply enough energy for vesicle budding. Actin cytoskeleton is thought to provide force for membrane invagination or vesicle scission, but how this force is transmitted to the plasma membrane is not understood. Here we describe the molecular mechanism of plasma membrane–actin cytoskeleton coupling mediated by cooperative action of epsin Ent1 and the HIP1R homolog Sla2 in yeast Saccharomyces cerevisiae. Sla2 anchors Ent1 to a stable endocytic coat by an unforeseen interaction between Sla2’s ANTH and Ent1’s ENTH lipid-binding domains. The ANTH and ENTH domains bind each other in a ligand-dependent manner to provide critical anchoring of both proteins to the membrane. The C-terminal parts of Ent1 and Sla2 bind redundantly to actin filaments via a previously unknown phospho-regulated actin-binding domain in Ent1 and the THATCH domain in Sla2. By the synergistic binding to the membrane and redundant interaction with actin, Ent1 and Sla2 form an essential molecular linker that transmits the force generated by the actin cytoskeleton to the plasma membrane, leading to membrane invagination and vesicle budding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 755-755 ◽  
Author(s):  
Maria Feola ◽  
Andrea Zamperone ◽  
Weili Bao ◽  
Tenzin Choesang ◽  
Huihui Li ◽  
...  

Abstract Erythropoiesis is a process during which multipotent hematopoietic stem cells proliferate, differentiate and ultimately produce enucleated reticulocytes. Terminal erythroid differentiation begins at the morphologically recognizable pro-erythroblast (pro-E) stage and is completed when orthochromatic erythroblasts (ortho-E) expel their nuclei to produce reticulocytes. Progressive differentiation between these stages occurs in homologous cell division progressively doubling proportions of pro-E, basophilic (baso-E), polychromatophilic (poly-E), and ortho-E, and multiple signaling pathways are involved in the generation of enucleated erythroid cells, including multiple steps requiring actin cytoskeleton reorganization. We have previously shown that β-thalassemic mice (th1/th1) demonstrate a disordered progression from pro-E to baso-E and that exogenous transferrin therapy restores normal proportion of early stage erythroid precursors in th1/th1 mice (Liu Blood 2013). To identify genes that play novel function in different stages of terminal erythropoiesis, we performed RNA seq analysis of sorted bone marrow pro-E from WT, th1/th1, and transferrin-treated th1/th1 mice. We identify pleckstrin-2 (plek2) as a gene of interest with a 15-fold increase in plek2 mRNA expression in th1/th1 relative to WT mice, normalized in transferrin-treated th1/th1 mice. Plek2 is an actin binding protein, like pleckstrin-1, contains a central DEP domain known to bind RacGTPase, is Epo dependent, and is expressed in all stages of terminal erythropoiesis. We evaluate plek2 mRNA and protein expression in sorted bone marrow erythroid precursors from WT, th1/th1, and transferrin-treated th1/th1 mice. Our data demonstrates a statistically significant increase in plek2 mRNA in th1/th1 relative to WT mice, with the highest expression of plek2 in poly-E, normalized in transferrin-treated th1/th1 mice (Figure 1A). A similar pattern of increased protein concentration in th1/th1 relative to WT mice and normalization in transferrin-treated th1/th1 mice is evident in sorted bone marrow samples (Figure 1B). Prior in vitro studies demonstrate that membrane localization of plek2 is required for erythroid differentiation. Thus, we performed sub-cellular fractionation in bone marrow erythroid precursors and determined for the first time that in sorted erythroblasts from WT bone marrow, plek2 is found exclusively in the cytoplasm in pro-E and in both cytoplasm and membrane from baso-E to ortho-E (Figure 2), co-localized with actin filaments in the membrane (data not shown). In contrast, sorted erythroblasts from th1/th1 bone marrow reveal membrane-associated plek2 starting from pro-E, demonstrating earlier co-localization with actin filaments (data not shown) and suggesting an earlier activation of plek2 and consequent actin cytoskeleton reorganization during erythroid differentiation in th1/th1 mice, normalized in transferrin-treated th1/th1 mice (Figure 2). Erythropoiesis involves a complicated and incompletely understood set of potentially related molecular signals influencing cell survival, differentiation, enucleation, and release into the circulation. For example, although Epo increases survival, Epo signaling also activates RacGTPases, inhibiting enucleation. Recent in vitro data demonstrates that knockdown of plek2 affected enucleation with significantly lower reticulocyte count. Although the involvement of RacGTPase in plek2-mediated erythroid differentiation has not been explored, we hypothesize that plek2 activation triggers RacGTPase and prevents enucleation in th1/th1 mice. Our data demonstrates that RacGTPase concentration is increased in sorted bone marrow erythroid precursors from th1/th1 relative to WT mice and normalized in transferrin-treated th1/th1 mice (Figure 1B). These results suggest that plek2 plays an important role in erythropoiesis likely as a key factor in the improved enucleation of transferrin-treated th1/th1 mice. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 137 (7) ◽  
pp. 1555-1566 ◽  
Author(s):  
Anne-Marie Bashour ◽  
Aaron T. Fullerton ◽  
Matthew J. Hart ◽  
George S. Bloom

Activated forms of the GTPases, Rac and Cdc42, are known to stimulate formation of microfilament-rich lamellipodia and filopodia, respectively, but the underlying mechanisms have remained obscure. We now report the purification and characterization of a protein, IQGAP1, which is likely to mediate effects of these GTPases on microfilaments. Native IQGAP1 purified from bovine adrenal comprises two ∼190-kD subunits per molecule plus substoichiometric calmodulin. Purified IQGAP1 bound directly to F-actin and cross-linked the actin filaments into irregular, interconnected bundles that exhibited gel-like properties. Exogenous calmodulin partially inhibited binding of IQGAP1 to F-actin, and was more effective in the absence, than in the presence of calcium. Immunofluorescence microscopy demonstrated cytochalasin D–sensitive colocalization of IQGAP1 with cortical microfilaments. These results, in conjunction with prior evidence that IQGAP1 binds directly to activated Rac and Cdc42, suggest that IQGAP1 serves as a direct molecular link between these GTPases and the actin cytoskeleton, and that the actin-binding activity of IQGAP1 is regulated by calmodulin.


2016 ◽  
Vol 52 (4) ◽  
pp. 807-810 ◽  
Author(s):  
Daniel J. Tetlow ◽  
Steve J. Winder ◽  
Christophe Aïssa

Despite its low affinity for actin monomers, a fragment of kabiramide C disrupts actin filamentsin vitroand in cells.


Sign in / Sign up

Export Citation Format

Share Document