The Aspergillus nidulans bimE (blocked-in-mitosis) gene encodes multiple cell cycle functions involved in mitotic checkpoint control and mitosis

1995 ◽  
Vol 108 (11) ◽  
pp. 3485-3499 ◽  
Author(s):  
S.W. James ◽  
P.M. Mirabito ◽  
P.C. Scacheri ◽  
N.R. Morris

The bimE (blocked-in-mitosis) gene appears to function as a negative mitotic regulator because the recessive bimE7 mutation can override certain interphase-arresting treatments and mutations, causing abnormal induction of mitosis. We have further investigated the role of bimE in cell cycle checkpoint control by: (1) coordinately measuring mitotic induction and DNA content of bimE7 mutant cells; and (2) analyzing epistasis relationships between bimE7 and 16 different nim mutations. A combination of cytological and flow cytometric techniques was used to show that bimE7 cells at restrictive temperature (44 degrees C) undergo a normal, although somewhat slower cell cycle prior to mitotic arrest. Most bimE7 cells were fully reversible from restrictive temperature arrest, indicating that they are able to enter mitosis normally, and therefore require bimE function in order to finish mitosis. Furthermore, epistasis studies between bimE7 and mutations in cdc2 pathway components revealed that the induction of mitosis caused by inactivation of bimE requires functional p34cdc2 kinase, and that mitotic induction by bimE7 depends upon several other nim genes whose functions are not yet known. The involvement of bimE in S phase function and mitotic checkpoint control was suggested by three lines of evidence. First, at restrictive temperature the bimE7 mutation slowed the cell cycle by delaying the onset or execution of S phase. Second, at permissive temperature (30 degrees C) the bimE7 mutation conferred enhanced sensitivity to the DNA synthesis inhibitor hydroxyurea. Finally, the checkpoint linking M phase to the completion of S phase was abolished when bimE7 was combined with two nim mutations that cause arrest in G1 or S phase. A model for bimE function based on these findings is presented.

1998 ◽  
Vol 18 (5) ◽  
pp. 2721-2728 ◽  
Author(s):  
Scott Davey ◽  
Christine S. Han ◽  
Sarah A. Ramer ◽  
Jennifer C. Klassen ◽  
Adam Jacobson ◽  
...  

ABSTRACT The human BLM gene is a member of the Escherichia coli recQ helicase family, which includes the Saccharomyces cerevisiae SGS1 and human WRN genes. Defects inBLM are responsible for the human disease Bloom’s syndrome, which is characterized in part by genomic instability and a high incidence of cancer. Here we describe the cloning ofrad12 +, which is the fission yeast homolog ofBLM and is identical to the recently reportedrhq1 + gene. We showed that rad12null cells are sensitive to DNA damage induced by UV light and γ radiation, as well as to the DNA synthesis inhibitor hydroxyurea. Overexpression of the wild-type rad12 + gene also leads to sensitivity to these agents and to defects associated with the loss of the S-phase and G2-phase checkpoint control. We showed genetically and biochemically thatrad12 + acts upstream fromrad9 +, one of the fission yeast G2checkpoint control genes, in regulating exit from the S-phase checkpoint. The physical chromosome segregation defects seen inrad12 null cells combined with the checkpoint regulation defect seen in the rad12 + overproducer implicate rad12 + as a key coupler of chromosomal integrity with cell cycle progression.


EMBO Reports ◽  
2009 ◽  
Vol 10 (9) ◽  
pp. 1029-1035 ◽  
Author(s):  
Nianxiang Zhang ◽  
Ramandeep Kaur ◽  
Shamima Akhter ◽  
Randy J Legerski

1981 ◽  
Vol 1 (8) ◽  
pp. 673-679
Author(s):  
V A Zakian ◽  
D W Wagner ◽  
W L Fangman

The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.


2020 ◽  
Vol 22 ◽  
Author(s):  
Hannah L. Smith ◽  
Harriet Southgate ◽  
Deborah A. Tweddle ◽  
Nicola J. Curtin

Abstract DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.


Sign in / Sign up

Export Citation Format

Share Document