scholarly journals Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells

1995 ◽  
Vol 108 (2) ◽  
pp. 797-809 ◽  
Author(s):  
A.E. Canfield ◽  
A.M. Schor

Cultured endothelial cells undergo a reversible transition from a resting (cobblestone) phenotype to an angiogenic (sprouting) phenotype. This transition mimics the early events of angiogenesis. We have previously reported that the addition of exogenous xylosides inhibits endothelial cel sprouting and modifies the extracellular matrix (ECM) synthesised by the cells. We have now investigated whether endothelial sprouting is mediated by the nature of the extracellular matrix in contact with the cells. Accordingly, cell-free matrices deposited by bovine aortic endothelial cells (BAEC) were isolated. These matrices were produced under conditions in which the formation of the sprouting phenotype was permitted (controls) or inhibited (by the addition of exogenous xylosides). BAEC were then plated on these matrices and grown under conditions which promote sprouting. Sprouting proceeded normally on control matrices, whereas it was inhibited when the cells were grown on matrices deposited in the presence of xylosides. The composition of the permissive and inhibitory matrices was then analysed. Inhibitory matrices contained reduced levels of tenascin and increased levels of thrombospondin-1 by comparison to the permissive matrices. In contrast, no differences were detected in the relative levels of laminin. The roles of tenascin and thrombospondin-1 in endothelial sprouting were confirmed using specific antibodies. Immunolocalisation studies revealed the presence of both proteins in sprouting cells. Antibodies to tenascin inhibited the formation of sprouting cells on permissive matrices and on gelatin-coated dishes without affecting cell growth. Tenascin synthesis was increased when sprouting cells were present in the cultures. Antibodies to thrombospondin-1 stimulated sprouting on inhibitory matrices. These results suggest that the transition from a resting to a sprouting phenotype is promoted by tenascin and inhibited by thrombospondin-1.

1988 ◽  
Vol 106 (3) ◽  
pp. 893-904 ◽  
Author(s):  
N V Ketis ◽  
J Lawler ◽  
R L Hoover ◽  
M J Karnovsky

Heat-shock proteins from confluent primary cultures of bovine aortic endothelial cells were analyzed by SDS-polyacrylamide gels. In addition to the increased synthesis of the classical heat-shock proteins, there is an increase of a 180,000-mol wt polypeptide in the growth media of heat-shocked cells. Immunoprecipitation with specific antiserum indicates that the 180,000-mol wt polypeptide is thrombospondin. Assay of mRNA levels coding for thrombospondin after brief hyperthermic treatment (45 degrees C, 10 min), followed by a recovery of 2 h at 37 degrees C, results in a twofold increase in mRNA abundance. In contrast, the activation level of the 71,000-mol wt heat-shock protein mRNA occurs at an earlier time than for thrombospondin mRNA. Immunofluorescence microscopy was used to study the intracellular and extracellular distribution of thrombospondin. Thrombospondin is localized to a prominent pattern of granules of intracellular fluorescence in a perinuclear distribution in cells not exposed to heat. Upon heat treatment, the pattern of granules of intracellular fluorescence appears more pronounced, and the fluorescence appears to be clustered more about the nucleus. There are at least three pools of extracellular forms of thrombospondin: (a) the fine fibrillar extracellular matrix thrombospondin; (b) the punctate granular thrombospondin; and (c) the thrombospondin found in the conditioned medium not associated with the extracellular matrix. When bovine aortic endothelial cells are exposed to heat, the extracellular matrix staining of a fibrillar nature is noticeably decreased, with an increase in the number and degree of fluorescence of focal areas where the punctate granule thrombospondin structures are highly localized. No gross morphological changes in extracellular matrix staining of fibronectin was noted. However, the intermediate filament network was very sensitive and collapsed around the nucleus after heat shock. We conclude that the expression of thrombospondin is heat-shock stimulated.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 721-728 ◽  
Author(s):  
J Mimuro ◽  
RR Schleef ◽  
DJ Loskutoff

The extracellular matrix (ECM) of cultured bovine aortic endothelial cells (BAEs) was analyzed by immunoblotting and reverse fibrin autography and shown to contain type 1 plasminogen activator inhibitor (PAI-1). Most PAI-1 in the ECM formed complexes with exogenously added tissue-type plasminogen activator (tPA), demonstrating that this PAI-1 was functionally active. The resulting tPA/PAI-1 complexes were recovered in the reaction solution, indicating that the PAI-1 in such complexes no longer bound to ECM. The PAI-1 could not be removed by incubating ECM in high salt (2 mol/L NaCl), sugars (1 mol/L galactose, 1 mol/L mannose), glycosaminoglycans (10 mmol/L heparin, 10 mmol/L dermatan sulfate), or epsilon-aminocaproic acid (0.1 mol/L). However, PAI-1 could be extracted from ECM by treatment with either arginine (0.5 mol/L) or potassium thiocyanate (2 mol/L), or by incubation under acidic conditions (pH 2.5). ECM depleted of PAI-1 by acid extraction was able to bind both the active and latent forms of PAI-1. In this instance, most of the bound PAI-1 did not form complexes with tPA, indicating that the latent form was not activated as a consequence of binding to ECM. Although the PAI-1 activity in conditioned medium decayed with a half-life (t 1/2) of less than 3 hours, the t 1/2 of ECM- associated PAI-1 was greater than 24 hours. These data suggest that PAI- 1 is produced by cultured BAEs in an active form and is then either released into the medium where it is rapidly inactivated or into the subendothelium where it binds to ECM. The specific binding of PAI-1 to ECM protects it from this inactivation.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 721-728 ◽  
Author(s):  
J Mimuro ◽  
RR Schleef ◽  
DJ Loskutoff

Abstract The extracellular matrix (ECM) of cultured bovine aortic endothelial cells (BAEs) was analyzed by immunoblotting and reverse fibrin autography and shown to contain type 1 plasminogen activator inhibitor (PAI-1). Most PAI-1 in the ECM formed complexes with exogenously added tissue-type plasminogen activator (tPA), demonstrating that this PAI-1 was functionally active. The resulting tPA/PAI-1 complexes were recovered in the reaction solution, indicating that the PAI-1 in such complexes no longer bound to ECM. The PAI-1 could not be removed by incubating ECM in high salt (2 mol/L NaCl), sugars (1 mol/L galactose, 1 mol/L mannose), glycosaminoglycans (10 mmol/L heparin, 10 mmol/L dermatan sulfate), or epsilon-aminocaproic acid (0.1 mol/L). However, PAI-1 could be extracted from ECM by treatment with either arginine (0.5 mol/L) or potassium thiocyanate (2 mol/L), or by incubation under acidic conditions (pH 2.5). ECM depleted of PAI-1 by acid extraction was able to bind both the active and latent forms of PAI-1. In this instance, most of the bound PAI-1 did not form complexes with tPA, indicating that the latent form was not activated as a consequence of binding to ECM. Although the PAI-1 activity in conditioned medium decayed with a half-life (t 1/2) of less than 3 hours, the t 1/2 of ECM- associated PAI-1 was greater than 24 hours. These data suggest that PAI- 1 is produced by cultured BAEs in an active form and is then either released into the medium where it is rapidly inactivated or into the subendothelium where it binds to ECM. The specific binding of PAI-1 to ECM protects it from this inactivation.


1983 ◽  
Vol 49 (02) ◽  
pp. 132-137 ◽  
Author(s):  
A Eldor ◽  
G Polliack ◽  
I Vlodavsky ◽  
M Levy

SummaryDipyrone and its metabolites 4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoan- tipyrine inhibited the formation of thromboxane A2 (TXA2) during in vitro platelet aggregation induced by ADP, epinephrine, collagen, ionophore A23187 and arachidonic acid. Inhibition occurred after a short incubation (30–40 sec) and depended on the concentration of the drug or its metabolites and the aggregating agents. The minimal inhibitory concentration of dipyrone needed to completely block aggregation varied between individual donors, and related directly to the inherent capacity of their platelets to synthesize TXA2.Incubation of dipyrone with cultured bovine aortic endothelial cells resulted in a time and dose dependent inhibition of the release of prostacyclin (PGI2) into the culture medium. However, inhibition was abolished when the drug was removed from the culture, or when the cells were stimulated to produce PGI2 with either arachidonic acid or ionophore A23187.These results indicate that dipyrone exerts its inhibitory effect on prostaglandins synthesis by platelets or endothelial cells through a competitive inhibition of the cyclooxygenase system.


1990 ◽  
Vol 265 (13) ◽  
pp. 7195-7201
Author(s):  
B A Lipton ◽  
E P Davidson ◽  
B H Ginsberg ◽  
M A Yorek

Sign in / Sign up

Export Citation Format

Share Document