scholarly journals Syndecan-1 expression in mammary epithelial tumor cells is E-cadherin-dependent

1996 ◽  
Vol 109 (6) ◽  
pp. 1393-1403 ◽  
Author(s):  
S. Leppa ◽  
K. Vleminckx ◽  
F. Van Roy ◽  
M. Jalkanen

E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule, which is mainly expressed in epithelial cells. Recent studies have shown that E-cadherin has an important role as an invasion suppressor molecule in epithelial tumor cells. Syndecan-1 is a cell surface proteoglycan that has been implicated in a number of cellular functions including cell-cell adhesion, cell-matrix anchorage and growth factor presentation for signalling receptors. Its suppression has also been shown to be associated with malignant transformation of epithelial cells. In order to better understand the coordinated regulation of cell-cell and cell-matrix interactions during malignant transformation, we have studied the expression of syndecan-1 in malignant mammary tumor cells genetically manipulated for E-cadherin expression. In invasive NM-e-ras-MAC1 cells, where E-cadherin was partially downregulated by specific antisense RNA, syndecan-1 expression was suppressed. Furthermore, transfection of E-cadherin cDNA into invasive NM-f-ras-TD cells resulted in the upregulation of syndecan-1 expression in association with decreased invasiveness. In both cases, regulation of syndecan-1 occurred post-transcriptionally, since syndecan-1 mRNA levels remained unchanged. Instead, a translational regulation is suggested, since syndecan-1 core protein synthesis was E-cadherin dependent. Another cell adhesion protein, beta 1-integrin was not affected by E-cadherin expression. The data provide an example of coordinated changes in the expression of two cell adhesion molecules, syndecan-1 and E-cadherin during epithelial cell transformation.

2010 ◽  
Vol 30 (13) ◽  
pp. 3262-3274 ◽  
Author(s):  
Oxana M. Tsygankova ◽  
Changqing Ma ◽  
Waixing Tang ◽  
Christopher Korch ◽  
Michael D. Feldman ◽  
...  

ABSTRACT Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression.


1998 ◽  
Vol 9 (11) ◽  
pp. 3161-3177 ◽  
Author(s):  
Peter A. Piepenhagen ◽  
W. James Nelson

Organization of proteins into structurally and functionally distinct plasma membrane domains is an essential characteristic of polarized epithelial cells. Based on studies with cultured kidney cells, we have hypothesized that a mechanism for restricting Na/K-ATPase to the basal-lateral membrane involves E-cadherin–mediated cell–cell adhesion and integration of Na/K-ATPase into the Triton X-100–insoluble ankyrin- and spectrin-based membrane cytoskeleton. In this study, we examined the relevance of these in vitro observations to the generation of epithelial cell polarity in vivo during mouse kidney development. Using differential detergent extraction, immunoblotting, and immunofluorescence histochemistry, we demonstrate the following. First, expression of the 220-kDa splice variant of ankyrin-3 correlates with the development of resistance to Triton X-100 extraction for Na/K-ATPase, E-cadherin, and catenins and precedes maximal accumulation of Na/K-ATPase. Second, expression of the 190-kDa slice variant of ankyrin-3 correlates with maximal accumulation of Na/K-ATPase. Third, Na/K-ATPase, ankyrin-3, and fodrin specifically colocalize at the basal-lateral plasma membrane of all epithelial cells in which they are expressed and during all stages of nephrogenesis. Fourth, the relative immunofluorescence staining intensities of Na/K-ATPase, ankyrin-3, and fodrin become more similar during development until they are essentially identical in adult kidney. Thus, renal epithelial cells in vivo regulate the accumulation of E-cadherin–mediated adherens junctions, the membrane cytoskeleton, and Na/K-ATPase through sequential protein expression and assembly on the basal-lateral membrane. These results are consistent with a mechanism in which generation and maintenance of polarized distributions of these proteins in vivo and in vitro involve cell–cell adhesion, assembly of the membrane cytoskeleton complex, and concomitant integration and retention of Na/K-ATPase in this complex.


1994 ◽  
Vol 267 (4) ◽  
pp. F612-F623
Author(s):  
E. E. Simon ◽  
C. H. Liu ◽  
M. Das ◽  
S. Nigam ◽  
T. J. Broekelmann ◽  
...  

We have characterized the integrins present on cultured tubule epithelial cells from human renal cortexes, enriched for proximal cells, using fluorescence microscopy, immunoprecipitation, and cell adhesion assays. By immunofluorescence, the alpha 3-integrin subunit stained most intensely and was present on all cells predominantly at cell-cell contacts. The alpha 6-subunit was present on all cells in a pattern consistent with extracellular matrix contacts. The alpha 5-subunit was present on most cells in a cell-matrix contact pattern; alpha V-subunit was weakly positive and occasionally seen in cell-matrix contacts. The alpha 2-subunit was present on clusters of distal tubule cells, predominantly at cell-cell contacts. Immunoprecipitation revealed the predominant integrin to be alpha 3 beta 1 with some alpha 2 beta 1, presumably contributed by distal cells. The alpha 5 beta 1-, alpha 6 beta 1-, alpha 6 beta 4-, and alpha V beta 3-integrins, as well as trace amounts of alpha 1 beta 1-integrins, were also present. The alpha 4 beta 1-integrin was not detected. Initial attachment to fibronectin was mediated by alpha V beta 3- and alpha 5 beta 1-integrins; initial attachment to laminin was mediated by the alpha 6 beta 1- and alpha 3 beta 1- integrins and, in some preparations, by an unidentified integrin; and initial attachment to collagen type IV was mediated by alpha V beta 3-integrin and an unidentified beta 1-integrin. After extensively immunodepleting membrane extracts with anti-alpha 1, -alpha 2, -alpha 3, -alpha 4, -alpha 5, -alpha 6, and -alpha V antibodies, an anti-beta 1 antibody still precipitated an integrin. Its electrophoretic mobility differs from the laminin-binding alpha 7 beta 1-integrin. Thus we have identified many of the integrins on cortical tubule cells and their role in mediating initial attachment to extracellular matrix. However, the cell adhesion assays and immunoprecipitations suggest the presence of an unidentified beta 1-integrin that may mediate renal tubule cell attachment to laminin and collagen.


Oncogene ◽  
2006 ◽  
Vol 25 (33) ◽  
pp. 4595-4604 ◽  
Author(s):  
M Maeda ◽  
E Johnson ◽  
S H Mandal ◽  
K R Lawson ◽  
S A Keim ◽  
...  

Cell ◽  
1991 ◽  
Vol 66 (1) ◽  
pp. 107-119 ◽  
Author(s):  
K. Vleminckx ◽  
L. Vakaet ◽  
M. Mareel ◽  
W. Fiers ◽  
F. Van Roy

2021 ◽  
Author(s):  
Andreas Schoenit ◽  
Cristina Lo Giudice ◽  
Nina Hahnen ◽  
Dirk Ollech ◽  
Kevin Jahnke ◽  
...  

The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell-cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as tool to control cell-cell adhesion of epithelial cells. We designed a DNA-E-cadherin hybrid system consisting of complementary DNA strands covalently bound to a truncated E-cadherin with a modified extracellular domain. DNA sequence design allows to tune the DNA-E-cadherin hybrid molecular binding strength, while retaining its cytosolic interactions and downstream signaling capabilities. The DNA-E-cadherin hybrid facilitates strong and reversible cell-cell adhesion in E-cadherin deficient cells by forming mechanotransducive adherens junctions. We assess the direct influence of cell-cell adhesion strength on intracellular signaling and collective cell dynamics. This highlights the scope of DNA nanotechnology as a precision technology to study and engineer cell collectives.


2000 ◽  
Vol 278 (5) ◽  
pp. F758-F768 ◽  
Author(s):  
Eoin Bergin ◽  
Jerrold S. Levine ◽  
Jason S. Koh ◽  
Wilfred Lieberthal

Adhesion of epithelial cells to matrix is known to inhibit apoptosis. However, the role of cell-cell adhesion in mediating cell survival remains uncertain. Primary cultures of mouse proximal tubular (MPT) cells were used to examine the role of cell-cell adhesion in promoting survival. When MPT cells were deprived of both cell-matrix and cell-cell adhesion, they died by apoptosis. However, when incubated in agarose-coated culture dishes (to prevent cell-matrix adhesion) and at high cell density (to allow cell-cell interactions), MPT cells adhered to one another and remained viable. Expression of E-cadherin among suspended, aggregating cells increased with time. A His-Ala-Val (HAV)-containing peptide that inhibits homophilic E-cadherin binding prevented cell-cell aggregation and promoted apoptosis of MPT cells in suspension. By contrast, inhibition of potential β1-integrin-mediated interactions between cells in suspension did not prevent either aggregation or survival of suspended cells. Aggregation of cells in suspension activated phosphatidylinositol 3-kinase (PI3K), an event that was markedly reduced by the presence of the HAV peptide. LY-294002, an inhibitor of PI3K, also inhibited survival of suspended cells. In summary, we provide novel evidence that MPT cells, when deprived of normal cell-matrix interactions, can adhere to one another in a cadherin-dependent fashion and remain viable. Survival of aggregated cells depends on activation of PI3K.


Sign in / Sign up

Export Citation Format

Share Document