scholarly journals Fibronectin is a survival factor for differentiated osteoblasts

1998 ◽  
Vol 111 (10) ◽  
pp. 1385-1393 ◽  
Author(s):  
R.K. Globus ◽  
S.B. Doty ◽  
J.C. Lull ◽  
E. Holmuhamedov ◽  
M.J. Humphries ◽  
...  

The skeletal extracellular matrix produced by osteoblasts contains the glycoprotein fibronectin, which regulates the adhesion, differentiation and function of various adherent cells. Interactions with fibronectin are required for osteoblast differentiation in vitro, since fibronectin antagonists added to cultures of immature fetal calvarial osteoblasts inhibit their progressive differentiation. To determine if fibronectin plays a unique role in fully differentiated osteoblasts, cultures that had already formed mineralized nodules in vitro were treated with fibronectin antagonists. Fibronectin antibodies caused >95% of the cells in the mature cultures to display characteristic features of apoptosis (nuclear condensation, apoptotic body formation, DNA laddering) within 24 hours. Cells appeared to acquire sensitivity to fibronectin antibody-induced apoptosis as a consequence of differentiation, since antibodies failed to kill immature cells and the first cells killed were those associated with mature nodules. Intact plasma fibronectin, as well as fragments corresponding to the amino-terminal, cell-binding, and carboxy-terminal domains of fibronectin, independently induced apoptosis of mature (day-13), but not immature (day-4), osteoblasts. Finally, transforming growth factor-beta1 partially protected cells from the apoptotic effects of fibronectin antagonists. Thus, in the course of maturation cultured osteoblasts switch from depending on fibronectin for differentiation to depending on fibronectin for survival. These data suggest that fibronectin, together with transforming growth factor-beta1, may affect bone formation, in part by regulating the survival of osteoblasts.

1990 ◽  
Vol 10 (6) ◽  
pp. 2669-2677
Author(s):  
G E Panganiban ◽  
K E Rashka ◽  
M D Neitzel ◽  
F M Hoffmann

The decapentaplegic (dpp) gene of Drosophila melanogaster is required for pattern formation in the embryo and for viability of the epithelial cells in the imaginal disks. The dpp protein product predicted from the DNA sequence is similar to members of a family of growth factors that includes transforming growth factor beta (TGF-beta). We have produced polyclonal antibodies to a recombinant dpp protein made in bacteria and used a metallothionein promoter to express a dpp cDNA in Drosophila S2 cells. Similar to other proteins in the TGF-beta family, the dpp protein produced by the Drosophila cells was proteolytically cleaved, and both portions of the protein were secreted from the cells. The amino-terminal 47-kilodalton (kDa) peptide was found in the medium and in the proteins adhering to the plastic petri dish. The carboxy-terminal peptide, the region with sequence similarity to the active ligand portion of TGF-beta, was found extracellularly as a 30-kDa homodimer. Most of the 30-kDa homodimer was in the S2 cell protein adsorbed onto the surface of the plastic dish. The dpp protein could be released into solution by increased salt concentration and nonionic detergent. Under these conditions, the amino-terminal and carboxy-terminal portions of dpp were not associated in a stable complex.


1999 ◽  
Vol 112 (9) ◽  
pp. 1405-1416
Author(s):  
D. Claisse ◽  
I. Martiny ◽  
B. Chaqour ◽  
Y. Wegrowski ◽  
E. Petitfrere ◽  
...  

Transforming growth factor beta1 (TGF-beta1) is a secreted polypeptide that is thought to play a major role in the regulation of folliculogenesis and differentiation of thyroid cells. On porcine thyroid follicular cells cultured on plastic substratum, TGF-beta1, in a concentration-dependent way, promoted the disruption of follicles, cell spreading, migration and confluency by a mechanism that did not involve cell proliferation. TGF-beta1 strongly activated the production of thrombospondin-1 and (alpha)vbeta3 integrin in a concentration-dependent manner whereas the expression of thyroglobulin was unaffected. Anisomycin, an inhibitor of protein synthesis, inhibited the effect of TGF-beta1 on cell organization. Thrombospondin-1 reproduced the effect of TGF-beta1. In the presence of thrombospondin-1 cells did not organize in follicle-like structures but, in contrast, spreaded and reached confluency independently of cell proliferation. This effect is suppressed by an RGD-containing peptide. The adhesive properties of thrombospondin-1 for thyroid cells were shown to be mediated by both the amino-terminal heparin-binding domain and the RGD domain of thrombospondin-1. Adhesion was shown to involve (alpha)vbeta3 integrin. The results show that TGF-beta1 exerted an influence upon function and behaviour of follicle cells partly mediated by the synthesis of thrombospondin-1 and of its receptor (alpha)vbeta3 integrin.


2012 ◽  
Vol 57 (11) ◽  
pp. 2901-2909 ◽  
Author(s):  
Xing Gu ◽  
Xin Ji ◽  
Le-Hua Shi ◽  
Chang-Hong Yi ◽  
Yun-Peng Zhao ◽  
...  

1994 ◽  
Vol 179 (3) ◽  
pp. 1041-1045 ◽  
Author(s):  
R Alam ◽  
P Forsythe ◽  
S Stafford ◽  
Y Fukuda

Hematopoietins, interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) have previously been shown to prolong eosinophil survival and abrogate apoptosis. The objective of this study was to investigate the effect of transforming growth factor beta (TGF-beta) on eosinophil survival and apoptosis. Eosinophils from peripheral blood of mildly eosinophilic donors were isolated to > 97% purity using discontinuous Percoll density gradient. Eosinophils were cultured with hematopoietins with or without TGF-beta for 4 d and their viability was assessed. We confirmed previous observations that hematopoietins prolonged eosinophil survival and inhibited apoptosis. TGF-beta at concentrations > or = 10(-12) M abrogated the survival-prolonging effects of hematopoietins in a dose-dependent manner and induced apoptosis as determined by DNA fragmentation in agarose gels. The effect of TGF-beta was blocked by an anti-TGF-beta antibody. The anti-TGF-beta antibody also prolonged eosinophil survival on its own. The culture of eosinophils with IL-3 and GM-CSF stimulated the synthesis of GM-CSF and IL-5, respectively, suggesting an autocrine mechanism of growth factor production. TGF-beta inhibited the synthesis of GM-CSF and IL-5 by eosinophils. TGF-beta did not have any effect on the expression of GM-CSF receptors on eosinophils. We also studied the effect of TGF-beta on eosinophil function and found that TGF-beta inhibited the release of eosinophil peroxidase. Thus, TGF-beta seems to inhibit eosinophil survival and function. The inhibition of endogenous synthesis of hematopoietins may be one mechanism by which TGF-beta blocks eosinophil survival and induces apoptosis.


2001 ◽  
Vol 155 (6) ◽  
pp. 1017-1028 ◽  
Author(s):  
Aki Hanyu ◽  
Yasuhiro Ishidou ◽  
Takanori Ebisawa ◽  
Tomomasa Shimanuki ◽  
Takeshi Imamura ◽  
...  

Inhibitory Smads (I-Smads) repress signaling by cytokines of the transforming growth factor-β (TGF-β) superfamily. I-Smads have conserved carboxy-terminal Mad homology 2 (MH2) domains, whereas the amino acid sequences of their amino-terminal regions (N domains) are highly divergent from those of other Smads. Of the two different I-Smads in mammals, Smad7 inhibited signaling by both TGF-β and bone morphogenetic proteins (BMPs), whereas Smad6 was less effective in inhibiting TGF-β signaling. Analyses using deletion mutants and chimeras of Smad6 and Smad7 revealed that the MH2 domains were responsible for the inhibition of both TGF-β and BMP signaling by I-Smads, but the isolated MH2 domains of Smad6 and Smad7 were less potent than the full-length Smad7 in inhibiting TGF-β signaling. The N domains of I-Smads determined the subcellular localization of these molecules. Chimeras containing the N domain of Smad7 interacted with the TGF-β type I receptor (TβR-I) more efficiently, and were more potent in repressing TGF-β signaling, than those containing the N domain of Smad6. The isolated N domain of Smad7 physically interacted with the MH2 domain of Smad7, and enhanced the inhibitory activity of the latter through facilitating interaction with TGF-β receptors. The N domain of Smad7 thus plays an important role in the specific inhibition of TGF-β signaling.


1990 ◽  
Vol 10 (6) ◽  
pp. 2669-2677 ◽  
Author(s):  
G E Panganiban ◽  
K E Rashka ◽  
M D Neitzel ◽  
F M Hoffmann

The decapentaplegic (dpp) gene of Drosophila melanogaster is required for pattern formation in the embryo and for viability of the epithelial cells in the imaginal disks. The dpp protein product predicted from the DNA sequence is similar to members of a family of growth factors that includes transforming growth factor beta (TGF-beta). We have produced polyclonal antibodies to a recombinant dpp protein made in bacteria and used a metallothionein promoter to express a dpp cDNA in Drosophila S2 cells. Similar to other proteins in the TGF-beta family, the dpp protein produced by the Drosophila cells was proteolytically cleaved, and both portions of the protein were secreted from the cells. The amino-terminal 47-kilodalton (kDa) peptide was found in the medium and in the proteins adhering to the plastic petri dish. The carboxy-terminal peptide, the region with sequence similarity to the active ligand portion of TGF-beta, was found extracellularly as a 30-kDa homodimer. Most of the 30-kDa homodimer was in the S2 cell protein adsorbed onto the surface of the plastic dish. The dpp protein could be released into solution by increased salt concentration and nonionic detergent. Under these conditions, the amino-terminal and carboxy-terminal portions of dpp were not associated in a stable complex.


Sign in / Sign up

Export Citation Format

Share Document