Molecular map of the desmosomal plaque

1999 ◽  
Vol 112 (23) ◽  
pp. 4325-4336 ◽  
Author(s):  
A.J. North ◽  
W.G. Bardsley ◽  
J. Hyam ◽  
E.A. Bornslaeger ◽  
H.C. Cordingley ◽  
...  

Recent biochemical and molecular approaches have begun to establish the protein interactions that lead to desmosome assembly. To determine whether these associations occur in native desmosomes we have performed ultrastructural localisation of specific domains of the major desmosomal components and have used the results to construct a molecular map of the desmosomal plaque. Antibodies directed against the amino- and carboxy-terminal domains of desmoplakin, plakoglobin and plakophilin 1, and against the carboxy-terminal domains of desmoglein 3, desmocollin 2a and desmocollin 2b, were used for immunogold labelling of ultrathin cryosections of bovine nasal epidermis. For each antibody, the mean distance of the gold particles, and thus the detected epitope, from the cytoplasmic surface of the plasma membrane was determined quantitatively. Results showed that: (i) plakophilin, although previously shown to bind intermediate filaments in vitro, is localised extremely close to the plasma membrane, rather than in the region where intermediate filaments are seen to insert into the desmosomal plaque; (ii) while the ‘a’ form of desmocollin overlaps with plakoglobin and desmoplakin, the shorter ‘b’ form may be spatially separated from them; (iii) desmoglein 3 extends across the entire outer plaque, beyond both desmocollins; (iv) the amino terminus of desmoplakin lies within the outer dense plaque and the carboxy terminus some 40 nm distant in the zone of intermediate filament attachment. This is consistent with a parallel arrangement of desmoplakin in dimers or higher order aggregates and with the predicted length of desmoplakin II, indicating that desmoplakin I may be folded or coiled. Thus several predictions from previous work were borne out by this study, but in other cases our observations yielded unexpected results. These results have significant implications relating to molecular interactions in desmosomes and emphasise the importance of applying multiple and complementary approaches to biological investigations.

2003 ◽  
Vol 17 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Raj Kumar ◽  
E. Brad Thompson

Abstract The N-terminal domains (NTDs) of many members of the nuclear hormone receptor (NHR) family contain potent transcription-activating functions (AFs). Knowledge of the mechanisms of action of the NTD AFs has lagged, compared with that concerning other important domains of the NHRs. In part, this is because the NTD AFs appear to be unfolded when expressed as recombinant proteins. Recent studies have begun to shed light on the structure and function of the NTD AFs. Recombinant NTD AFs can be made to fold by application of certain osmolytes or when expressed in conjunction with a DNA-binding domain by binding that DNA-binding domain to a DNA response element. The sequence of the DNA binding site may affect the functional state of the AFs domain. If properly folded, NTD AFs can bind certain cofactors and primary transcription factors. Through these, and/or by direct interactions, the NTD AFs may interact with the AF2 domain in the ligand binding, carboxy-terminal portion of the NHRs. We propose models for the folding of the NTD AFs and their protein-protein interactions.


2001 ◽  
Vol 86 (07) ◽  
pp. 266-275 ◽  
Author(s):  
Therese Wiedmer ◽  
Peter Sims

SummaryPlasma membrane phospholipid asymmetry is maintained by an aminophospholipid translocase that transports phosphatidylserine (PS) and phosphatidylethanolamine (PE) from outer to inner membrane leaflet. Cell activation or injury leads to redistribution of all major lipid classes within the plasma membrane, resulting in surface exposure of PS and PE. Cell surface-exposed PS can serve as receptor sites for coagulation enzyme complexes, and contributes to cell clearance by the reticuloendothelial system. The mechanism(s) by which this PL ”scrambling” occurs is poorly understood. A protein called phospholipid scramblase (PLSCR1) has been cloned that exhibits Ca2+-activated PL scrambling activity in vitro. PLSCR1 belongs to a new family of proteins with no apparent homology to other known proteins. PLSCR1 is palmitoylated and contains a potential protein kinase C phosphorylation site. It further contains multiple PxxP and PPxY motifs, representing potential binding motifs for SH3 and WW domains implicated in mediating protein-protein interactions. Although at least two proteins have been shown to associate with PLSCR1, the functional significance of such interaction remains to be elucidated. Evidence that PLSCR1 may serve functions other than its proposed activity as PL scramblase is also presented.


2003 ◽  
Vol 284 (6) ◽  
pp. C1633-C1644 ◽  
Author(s):  
Mohammed A. Khadeer ◽  
Zhihui Tang ◽  
Harriet S. Tenenhouse ◽  
Maribeth V. Eiden ◽  
Heini Murer ◽  
...  

We previously demonstrated that inhibition of Na-dependent phosphate (Pi) transport in osteoclasts led to reduced ATP levels and diminished bone resorption. These findings suggested that Na/Picotransporters in the osteoclast plasma membrane provide Pifor ATP synthesis and that the osteoclast may utilize part of the Pireleased from bone resorption for this purpose. The present study was undertaken to define the cellular localization of Na/Picotransporters in the mouse osteoclast and to identify the proteins with which they interact. Using glutathione S-transferase (GST) fusion constructs, we demonstrate that the type IIa Na/Picotransporter (Npt2a) in osteoclast lysates interacts with the Na/H exchanger regulatory factor, NHERF-1, a PDZ protein that is essential for the regulation of various membrane transporters. In addition, NHERF-1 in osteoclast lysates interacts with Npt2a in spite of deletion of a putative PDZ-binding domain within the carboxy terminus of Npt2a. In contrast, deletion of the carboxy-terminal TRL amino acid motif of Npt2a significantly reduced its interaction with NHERF-1 in kidney lysates. Studies in osteoclasts transfected with green fluorescent protein-Npt2a constructs indicated that Npt2a colocalizes with NHERF-1 and actin at or near the plasma membrane of the osteoclast and associates with ezrin, a linker protein associated with the actin cytoskeleton, likely via NHERF-1. Furthermore, we demonstrate by RT/PCR of osteoclast RNA and in situ hybridization that the type III Na/Picotransporter, PiT-1, is also expressed in mouse osteoclasts. To examine the cellular distribution of PiT-1, we infected mouse osteoclasts with a retroviral vector encoding PiT-1 fused to an epitope tag. PiT-1 colocalizes with actin and is present on the basolateral membrane of the polarized osteoclast, similar to that previously reported for Npt2a. Taken together, our data suggest that association of Npt2a with NHERF-1, ezrin, and actin, and of PiT-1 with actin, may be responsible for membrane sorting and regulation of these Na/Picotransporters in the osteoclast.


2017 ◽  
Vol 117 (01) ◽  
pp. 105-115 ◽  
Author(s):  
Yvonne Schaletzki ◽  
Marie-Luise Kromrey ◽  
Susanne Bröderdorf ◽  
Elke Hammer ◽  
Markus Grube ◽  
...  

SummaryThe multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knockdown of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leuk aemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.Supplementary Material to this article is available at www.thrombosis-online.com.


1997 ◽  
Vol 110 (21) ◽  
pp. 2629-2634 ◽  
Author(s):  
S.D. Georgatos ◽  
F. Gounari ◽  
G. Goulielmos ◽  
U. Aebi

For nearly three decades cytoplasmic intermediate filaments (IFs) have been described as 10 nm thick, unbranched ropes radiating from the cell nucleus and extending to the plasma membrane. This stereotype is now being challenged by the discovery and molecular characterization of the beaded filaments (BFs), a novel class of IFs composed of the lens-specific proteins filensin and phakinin. In contrast to ‘mainstream’ IFs, BFs have a distinctly nodular appearance and form a meshwork underneath the plasma membrane of the lens fiber cells. In vitro assembly studies, expression of filensin and phakinin in cultured cells, and analysis of the corresponding genes reveal that these proteins have evolved from two different subfamilies of IF proteins, thus yielding a unique structure. The new information provides a basis for understanding how the various forms of tissue-specific IF proteins might have developed adopting to the constraints of a specialized environment.


2006 ◽  
Vol 12 (4) ◽  
pp. 513-523 ◽  
Author(s):  
Albert D. G. de Roos

Current theories about the origin of the eukaryotic cell all assume that during evolution a prokaryotic cell acquired a nucleus. Here, it is shown that a scenario in which the nucleus acquired a plasma membrane is inherently less complex because existing interfaces remain intact during evolution. Using this scenario, the evolution to the first eukaryotic cell can be modeled in three steps, based on the self-assembly of cellular membranes by lipid-protein interactions. First, the inclusion of chromosomes in a nuclear membrane is mediated by interactions between laminar proteins and lipid vesicles. Second, the formation of a primitive endoplasmic reticulum, or exomembrane, is induced by the expression of intrinsic membrane proteins. Third, a plasma membrane is formed by fusion of exomembrane vesicles on the cytoskeletal protein scaffold. All three self-assembly processes occur both in vivo and in vitro. This new model provides a gradual Darwinistic evolutionary model of the origins of the eukaryotic cell and suggests an inherent ability of an ancestral, primitive genome to induce its own inclusion in a membrane.


1996 ◽  
Vol 134 (6) ◽  
pp. 1455-1467 ◽  
Author(s):  
B Nikolic ◽  
E Mac Nulty ◽  
B Mir ◽  
G Wiche

We have generated a series of plectin deletion and mutagenized cDNA constructs to dissect the functional sequences that mediate plectin's interaction with intermediate filament (IF) networks, and scored their ability to coalign or disrupt intermediate filaments when ectopically expressed in rat kangaroo PtK2 cells. We show that a stretch of approximately 50 amino acid residues within plectin's carboxy-terminal repeat 5 domain serves as a unique binding site for both vimentin and cytokeratin IF networks of PtK2 cells. Part of the IF-binding domain was found to constitute a functional nuclear localization signal (NLS) motif, as demonstrated by nuclear import of cytoplasmic proteins linked to this sequence. Site directed mutagenesis revealed a specific cluster of four basic amino acid residues (arg4277-arg4280) residing within the NLS sequence motif to be essential for IF binding. When mutant proteins corresponding to those expressed in PtK2 cells were expressed in bacteria and purified proteins subjected to a sensitive quantitative overlay binding assay using Eu3+-labeled vimentin, the relative binding capacities of mutant proteins measured were fully consistent with the mutant's phenotypes observed in living cells. Using recombinant proteins we also show by negative staining and rotary shadowing electron microscopy that in vitro assembled vimentin intermediate filaments become packed into dense aggregates upon incubation with plectin repeat 5 domain, in contrast to repeat 4 domain or a mutated repeat 5 domain.


2019 ◽  
Author(s):  
Huayin Wu ◽  
Yinan Shen ◽  
Dianzhuo Wang ◽  
Harald Herrmann ◽  
Robert D. Goldman ◽  
...  

AbstractDivalent cations in a concentration-dependent manner behave as effective crosslinkers of intermediate filaments (IFs) such as vimentin IF (VIF). These interactions have been mostly attributed to their multivalency. However, ion-protein interactions often depend on the ion species, and these effects have not been widely studied in IFs. Here we investigate the effects of two biologically important divalent cations, Zn2+ and Ca2+, on VIF network structure and mechanics in vitro. We find that the network structure is unperturbed at micromolar Zn2+ concentrations, but strong bundle formation is observed at a concentration of 100 μM. Microrheological measurements show that network stiffness increases with cation concentration. However, bundling of filaments softens the network. This trend also holds for VIF networks formed in the presence of Ca2+, but remarkably, a concentration of Ca2+ that is two orders higher is needed to achieve the same effect as with Zn2+, which suggests the importance of salt-protein interactions as described by the Hofmeister effect. Furthermore, we find evidence of competitive binding between the two divalent ion species. Hence, specific interactions between VIFs and divalent cations are likely to be an important mechanism by which cells can control their cytoplasmic mechanics.SignificanceIntermediate filaments are key structural elements within cells; they are known to form networks that can be crosslinked by divalent cations, but the interactions between the ions and the filaments are not well understood. By measuring the effects that two divalent cations, zinc and calcium, have on the structure and mechanics of vimentin intermediate filaments (VIFs), we show that although both have concentration-dependent effects on VIFs, much more calcium is needed to achieve the same effect as a small amount of zinc. Furthermore, when mixtures of the ions are present, the results suggest that there is binding competition. Thus, cells may use the presence of different cation species to precisely control their internal mechanical properties.


1985 ◽  
Vol 5 (5) ◽  
pp. 916-922 ◽  
Author(s):  
M D Resh ◽  
R L Erikson

Phosphorylation of the src gene product pp60v-src was studied in plasma membrane fractions prepared from Rous sarcoma virus-transformed vole cells. Upon addition of [gamma-32P]ATP to isolated membrane vesicles, phosphate was incorporated into a 60,000-dalton polypeptide identified as pp60v-src. In the presence of vanadate, pp60v-src phosphorylation was stimulated ca. 30-fold. At low concentrations of ATP (1 microM), this reaction occurred almost exclusively on the carboxy-terminal 26,000-dalton region of pp60v-src. However, at higher ATP concentrations (100 microM), additional sites of phosphorylation were evident in the amino-terminal 34,000-dalton region. Kinetic analyses, performed under conditions in which ATP hydrolysis was minimal, revealed that the phosphorylation reaction at the carboxy terminus exhibited a higher Vmax and a lower Km for ATP than those occurring at the amino terminus. In addition, the amino-terminal region of pp60v-src was more rapidly dephosphorylated than the carboxy-terminal region. These results indicate that interaction of pp60v-src with the plasma membrane may limit the extent of amino-terminal phosphorylation by lowering the rate of the reaction and the affinity for the substrate while increasing its susceptibility to phosphoprotein phosphatases. We suggest that the use of transformed-cell membrane preparations provides a model system for studying the possible regulatory roles of phosphorylation and dephosphorylation on pp60v-src function.


Sign in / Sign up

Export Citation Format

Share Document