Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network

1999 ◽  
Vol 112 (6) ◽  
pp. 845-854 ◽  
Author(s):  
A.C. Valdez ◽  
J.P. Cabaniols ◽  
M.J. Brown ◽  
P.A. Roche

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.

1999 ◽  
Vol 10 (7) ◽  
pp. 2191-2197 ◽  
Author(s):  
Christian Itin ◽  
Nirit Ulitzur ◽  
Bettina Mühlbauer ◽  
Suzanne R. Pfeffer

Late endosomes and the Golgi complex maintain their cellular localizations by virtue of interactions with the microtubule-based cytoskeleton. We study the transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network in vitro. We show here that this process is facilitated by microtubules and the microtubule-based motor cytoplasmic dynein; transport is inhibited by excess recombinant dynamitin or purified microtubule-associated proteins. Mapmodulin, a protein that interacts with the microtubule-associated proteins MAP2, MAP4, and tau, stimulates the microtubule- and dynein-dependent localization of Golgi complexes in semi-intact Chinese hamster ovary cells. The present study shows that mapmodulin also stimulates the initial rate with which mannose 6-phosphate receptors are transported from late endosomes to thetrans-Golgi network in vitro. These findings represent the first indication that mapmodulin can stimulate a vesicle transport process, and they support a model in which the microtubule-based cytoskeleton enhances the efficiency of vesicle transport between membrane-bound compartments in mammalian cells.


1997 ◽  
Vol 139 (5) ◽  
pp. 1119-1135 ◽  
Author(s):  
Manuel Rojo ◽  
Rainer Pepperkok ◽  
Gregory Emery ◽  
Roland Kellner ◽  
Espen Stang ◽  
...  

Here, we report the localization and characterization of BHKp23, a member of the p24 family of transmembrane proteins, in mammalian cells. We find that p23 is a major component of tubulovesicular membranes at the cis side of the Golgi complex (estimated density: 12,500 copies/μm2 membrane surface area, or ≈30% of the total protein). Our data indicate that BHKp23-containing membranes are part of the cis-Golgi network/intermediate compartment . Using the G protein of vesicular stomatitis virus as a transmembrane cargo molecule, we find that p23 membranes are an obligatory station in forward biosynthetic membrane transport, but that p23 itself is absent from transport vesicles that carry the G protein to and beyond the Golgi complex. Our data show that p23 is not present to any significant extent in coat protein (COP) I-coated vesicles generated in vitro and does not colocalize with COP I buds and vesicles. Moreover, we find that p23 cytoplasmic domain is not involved in COP I membrane recruitment. Our data demonstrate that microinjected antibodies against the cytoplasmic tail of p23 inhibit G protein transport from the cis-Golgi network/ intermediate compartment to the cell surface, suggesting that p23 function is required for the transport of transmembrane cargo molecules. These observations together with the fact that p23 is a highly abundant component in the intermediate compartment, lead us to propose that p23 contributes to membrane structure, and that this contribution is necessary for efficient segregation and transport.


1991 ◽  
Vol 112 (5) ◽  
pp. 823-831 ◽  
Author(s):  
Y Goda ◽  
S R Pfeffer

We have recently described a cell-free system that reconstitutes the vesicular transport of 300-kD mannose 6-phosphate receptors from late endosomes to the trans-Golgi network (TGN). We report here that the endosome----TGN transport reaction was significantly inhibited by low concentrations of the alkylating agent, N-ethylmaleimide (NEM). Addition of fresh cytosol to NEM-inactivated reaction mixtures restored transport to at least 80% of control levels. Restorative activity was only present in cytosol fractions, and was sensitive to trypsin treatment or incubation at 100 degrees C. A variety of criteria demonstrated that the restorative activity was distinct from NSF, an NEM-sensitive protein that facilitates the transport of proteins from the ER to the Golgi complex and between Golgi cisternae. Cytosol fractions immunodepleted of greater than or equal to 90% of NSF protein, or heated to 37 degrees C to inactivate greater than or equal to 93% of NSF activity, were fully able to restore transport to NEM-treated reaction mixtures. The majority of restorative activity sedimented as a uniform species of 50-100 kD upon glycerol gradient centrifugation. We have termed this activity ETF-1, for endosome----TGN transport factor-1. Kinetic experiments showed that ETF-1 acts at a very early stage in vesicular transport, which may reflect a role for this factor in the formation of nascent transport vesicles. GTP hydrolysis appears to be required throughout the transport reaction. The ability of GTP gamma S to inhibit endosome----TGN transport required the presence of donor, endosome membranes, and cytosol, which may reflect a role for guanine nucleotides in vesicle budding. Finally, ETF-1 appears to act before a step that is blocked by GTP gamma S, during the process by which proteins are transported from endosomes to the TGN in vitro.


1999 ◽  
Vol 112 (11) ◽  
pp. 1721-1732 ◽  
Author(s):  
M.J. Francis ◽  
E.E. Jones ◽  
E.R. Levy ◽  
R.L. Martin ◽  
S. Ponnambalam ◽  
...  

The protein encoded by the Menkes disease gene (MNK) is localised to the Golgi apparatus and cycles between the trans-Golgi network and the plasma membrane in cultured cells on addition and removal of copper to the growth medium. This suggests that MNK protein contains active signals that are involved in the retention of the protein to the trans-Golgi network and retrieval of the protein from the plasma membrane. Previous studies have identified a signal involved in Golgi retention within transmembrane domain 3 of MNK. To identify a motif sufficient for retrieval of MNK from the plasma membrane, we analysed the cytoplasmic domain, downstream of transmembrane domain 7 and 8. Chimeric constructs containing this cytoplasmic domain fused to the reporter molecule CD8 localised the retrieval signal(s) to 62 amino acids at the C terminus. Further studies were performed on putative internalisation motifs, using site-directed mutagenesis, protein expression, chemical treatment and immunofluorescence. We observed that a di-leucine motif (L1487L1488) was essential for rapid internalisation of chimeric CD8 proteins and the full-length Menkes cDNA from the plasma membrane. We suggest that this motif mediates the retrieval of MNK from the plasma membrane into the endocytic pathway, via the recycling endosomes, but is not sufficient on its own to return the protein to the Golgi apparatus. These studies provide a basis with which to identify other motifs important in the sorting and delivery of MNK from the plasma membrane to the Golgi apparatus.


2009 ◽  
pp. 388-401 ◽  
Author(s):  
Gonzalo A. Mardones ◽  
Roman S. Polishchuk ◽  
Juan S. Bonifacino

2000 ◽  
Vol 11 (10) ◽  
pp. 3289-3298 ◽  
Author(s):  
Wolfram Antonin ◽  
Claudia Holroyd ◽  
Ritva Tikkanen ◽  
Stefan Höning ◽  
Reinhard Jahn

Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of thetrans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes.


Science ◽  
1990 ◽  
Vol 248 (4962) ◽  
pp. 1539-1541 ◽  
Author(s):  
R. Draper ◽  
Y Goda ◽  
F. Brodsky ◽  
Pfeffer

Sign in / Sign up

Export Citation Format

Share Document