The interaction of plectin with actin: evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin

2001 ◽  
Vol 114 (11) ◽  
pp. 2065-2076 ◽  
Author(s):  
Lionel Fontao ◽  
Dirk Geerts ◽  
Ingrid Kuikman ◽  
Jan Koster ◽  
Duco Kramer ◽  
...  

Plectin is a major component of the cytoskeleton and is expressed in a wide variety of cell types. It plays an important role in the integrity of the cytoskeleton by cross-linking the three filamentous networks and stabilizing cell-matrix and cell-cell contacts. Sequence analysis showed that plectin contains a highly conserved actin-binding domain, consisting of a pair of calponin-like subdomains. Using yeast two-hybrid assays in combination with in vitro binding experiments, we demonstrate that the actin-binding domain of plectin is fully functional and preferentially binds to polymeric actin. The sequences required for actin binding were identified at the C-terminal end of the first calponin homology domain within the actin-binding domain of plectin. We found that the actin-binding domain of plectin is able to bundle actin filaments and we present evidence that this is mediated by the dimerization of this domain. In addition we also show that plectin and another member of the plakin family, dystonin, can heterodimerize by their actin-binding domains. We propose a new mechanism by which plectin and possibly also other actin-binding proteins can regulate the organization of the F-actin network in the cell.

1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


1994 ◽  
Vol 126 (5) ◽  
pp. 1231-1240 ◽  
Author(s):  
A R Menkel ◽  
M Kroemker ◽  
P Bubeck ◽  
M Ronsiek ◽  
G Nikolai ◽  
...  

Vinculin, a major structural component of vertebrate cell-cell and cell-matrix adherens junctions, has been found to interact with several other junctional components. In this report, we have identified and characterized a binding site for filamentous actin. These results included studies with gizzard vinculin, its proteolytic head and tail fragments, and recombinant proteins containing various gizzard vinculin sequences fused to the maltose binding protein (MBP) of Escherichia coli. In cosedimentation assays, only the vinculin tail sequence mediated a direct interaction with actin filaments. The binding was saturable, with a dissociation constant value in the micromolar range. Experiments with deletion clones localized the actin-binding domain to a region confined by residues 893-1016 in the 170-residue-long carboxyterminal segment, while the proline-rich hinge connecting the globular head to the rodlike tail was not required for this interaction. In fixed and permeabilized cells (cell models), as well as after microinjection, proteins containing the actin-binding domain specifically decorated stress fibers and the cortical network of fibroblasts and epithelial cells, as well as of brush border type microvilli. These results corroborated the sedimentation experiments. Our data support and extend previous work showing that vinculin binds directly to actin filaments. They are consistent with a model suggesting that in adhesive cells, the NH2-terminal head piece of vinculin directs this molecule to the focal contact sites, while its tail segment causes bundling of the actin filament ends into the characteristic spear tip-shaped structures.


2001 ◽  
Vol 114 (7) ◽  
pp. 1367-1377 ◽  
Author(s):  
M. Peckham ◽  
G. Miller ◽  
C. Wells ◽  
D. Zicha ◽  
G.A. Dunn

Overexpression of (β)-actin is known to alter cell morphology, though its effect on cell motility has not been documented previously. Here we show that overexpressing (β)-actin in myoblasts has striking effects on motility, increasing cell speed to almost double that of control cells. This occurs by increasing the areas of protrusion and retraction and is accompanied by raised levels of (β)-actin in the newly protruded regions. These regions of the cell margin, however, show decreased levels of polymerised actin, indicating that protrusion can outpace the rate of actin polymerisation in these cells. Moreover, the expression of (β)*-actin (a G244D mutant, which shows defective polymerisation in vitro) is equally effective at increasing speed and protrusion. Concomitant changes in actin binding proteins show no evidence of a consistent mechanism for increasing the rate of actin polymerisation in these actin overexpressing cells. The increase in motility is confined to poorly spread cells in both cases and the excess motility can be abolished by blocking myosin function with butanedione monoxime (BDM). Our observations on normal myoblasts are consistent with the view that they protrude by the assembly and cross linking of actin filaments. In contrast, the additional motility shown by cells overexpressing (β)-actin appears not to result from an increase in the rate of actin polymerisation but to depend on myosin function. This suggests that the additional protrusion arises from a different mechanism. We discuss the possibility that it is related to retraction-induced protrusion in fibroblasts. In this phenomenon, a wave of increased protrusion follows a sudden collapse in cell spreading. This view could explain why it is only the additional motility that depends on spreading, and has implications for understanding the differences in locomotion that distinguish tissue cells from highly invasive cell types such as leucocytes and malignant cells.


2020 ◽  
Author(s):  
Yuuki Hayakawa ◽  
Masak Takaine ◽  
Taiga Imai ◽  
Masafumi D. Yamada ◽  
Keiko Hirose ◽  
...  

AbstractThe contraction of contractile rings (CRs) depends on interaction between actin filaments and myosin II filaments. The rate of contraction in the fission yeast Schizosaccharomyces pombe is less than 1/120 of the velocity of acto-myosin II movement in vitro, but the mechanism of inhibition has not been described. Here, we found that the calponin-homology actin binding domain of fission yeast IQGAP Rng2 (Rng2CHD) strongly inhibits the motility of actin filaments on skeletal muscle myosin II fragments in vitro, even at a low ratio of bound Rng2CHD to actin protomers, reducing the sliding velocity to half when the binding ratio was 1/75. Rng2CHD also induced structural changes of actin filaments and reduced the affinity between actin filaments and subfragment 1 (S1) of muscle myosin II carrying ADP. Intriguingly, actin-activated ATPase of S1 was only mildly inhibited, even by high concentrations of Rng2CHD. Moreover, the motility of actin filaments by myosin V was not inhibited by Rng2CHD. We propose a new regulatory mechanism for acto-myosin II movement that involves Rng2CHD-induced structural changes of actin filaments.


2006 ◽  
Vol 17 (11) ◽  
pp. 4720-4735 ◽  
Author(s):  
Alistair N. Hume ◽  
Abul K. Tarafder ◽  
José S. Ramalho ◽  
Elena V. Sviderskaya ◽  
Miguel C. Seabra

Melanophilin (Mlph) regulates retention of melanosomes at the peripheral actin cytoskeleton of melanocytes, a process essential for normal mammalian pigmentation. Mlph is proposed to be a modular protein binding the melanosome-associated protein Rab27a, Myosin Va (MyoVa), actin, and microtubule end-binding protein (EB1), via distinct N-terminal Rab27a-binding domain (R27BD), medial MyoVa-binding domain (MBD), and C-terminal actin-binding domain (ABD), respectively. We developed a novel melanosome transport assay using a Mlph-null cell line to study formation of the active Rab27a:Mlph:MyoVa complex. Recruitment of MyoVa to melanosomes correlated with rescue of melanosome transport and required intact R27BD together with MBD exon F–binding region (EFBD) and unexpectedly a potential coiled-coil forming sequence within ABD. In vitro binding studies indicate that the coiled-coil region enhances binding of MyoVa by Mlph MBD. Other regions of Mlph reported to interact with MyoVa globular tail, actin, or EB1 are not essential for melanosome transport rescue. The strict correlation between melanosomal MyoVa recruitment and rescue of melanosome distribution suggests that stable interaction with Mlph and MyoVa activation are nondissociable events. Our results highlight the importance of the coiled-coil region together with R27BD and EFBD regions of Mlph in the formation of the active melanosomal Rab27a-Mlph-MyoVa complex.


2013 ◽  
Vol 24 (23) ◽  
pp. 3710-3720 ◽  
Author(s):  
Scott D. Hansen ◽  
Adam V. Kwiatkowski ◽  
Chung-Yueh Ouyang ◽  
HongJun Liu ◽  
Sabine Pokutta ◽  
...  

The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.


2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


2011 ◽  
Vol 2011 ◽  
pp. 1-18
Author(s):  
Richard A. Zuellig ◽  
Beat C. Bornhauser ◽  
Ralf Amstutz ◽  
Bruno Constantin ◽  
Marcus C. Schaub

Utrophin and dystrophin present two large proteins that link the intracellular actin cytoskeleton to the extracellular matrix via the C-terminal-associated protein complex. Here we describe a novel short N-terminal isoform of utrophin and its protein product in various rat tissues (N-utro, 62 kDa, amino acids 1–539, comprising the actin-binding domain plus the first two spectrin repeats). Using different N-terminal recombinant utrophin fragments, we show that actin binding exhibits pronounced negative cooperativity (affinity constantsK1=∼5×106andK2=∼1×105 M-1) and is Ca2+-insensitive. Expression of the different fragments in COS7 cells and in myotubes indicates that the actin-binding domain alone binds exlusively to actin filaments. The recombinant N-utro analogue binds in vitro to actin and in the cells associates to the membranes. The results indicate that N-utro may be responsible for the anchoring of the cortical actin cytoskeleton to the membranes in muscle and other tissues.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hanshuang Shao ◽  
Bentley Wingert ◽  
Astrid Weins ◽  
Martin R. Pollak ◽  
Carlos Camacho ◽  
...  

Abstract Natural mutations such as lysine 255 to glutamic acid (K to E), threonine 259 to isoleucine (T to I) and serine 262 to proline (S to P) that occur within the actin binding domain of alpha-actinin-4 (ACTN4) cause an autosomal dominant form of focal segmental glomerulosclerosis (FSGS) in affected humans. This appears due to elevated actin binding propensity in podocytes resulting in a ‘frozen’ cytoskeleton. What is challenging is how this cellular behavior would be compatible with other cell functions that rely on cytoskeleton plasticity. Our previous finding revealed that wild type ACTN4 can be phosphorylated at tyrosine 4 and 31 upon stimulation by epidermal growth factor (EGF) to reduce the binding to actin cytoskeleton. We queried whether the elevated actin binding activity of FSGS mutants can be downregulated by EGF-mediated phosphorylation, to discern a mechanism by which the actin-cytoskeleton can be released in FSGS. In this manuscript, we first constructed variants with Y4/31E to mimic the phosphorylation at tyrosines 4 and 31 based on earlier modeling simulations that predicted that this would bury the actin binding domains and lead to a decrease in actin binding activity. We found that Y4/31E significantly reduced the actin binding activity of K255E, T259I and S262P, dramatically preventing them from aggregating in, and inhibiting motility of, podocytes, fibroblasts and melanoma cells. A putative kinase target site at Y265 in the actin binding domain was also generated as a phosphomimetic ACTN4 Y265E that demonstrated even greater binding to actin filaments than K255E and the other FSGS mutants. That the tyrosine kinase regulation of FSGS mutation binding to actin filaments can occur in cells was shown by phosphorylation on Y4 and Y31 of the K225E after extended exposure of cells to EGF, with a decrease in ACTN4 aggregates in fibroblasts. These findings will provide evidence for targeting the N-termini of FSGS ACTN4 mutants to downregulate their actin binding activities for ameliorating the glomerulosclerotic phenotype of patients.


Sign in / Sign up

Export Citation Format

Share Document