Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity

2001 ◽  
Vol 114 (3) ◽  
pp. 609-622 ◽  
Author(s):  
G. Steinberg ◽  
R. Wedlich-Soldner ◽  
M. Brill ◽  
I. Schulz

Many fungal pathogens undergo a yeast-hyphal transition during their pathogenic development that requires rearrangement of the cytoskeleton, followed by directed membrane traffic towards the growth region. The role of microtubules and their dynamic behavior during this process is not well understood. Here we set out to elucidate the organization, cellular role and in vivo dynamics of microtubules in the dimorphic phytopathogen Ustilago maydis. Hyphae and unbudded yeast-like cells of U. maydis contain bundles of spindle pole body-independent microtubules. At the onset of bud formation two spherical tubulin structures focus microtubules towards the growth region, suggesting that they support polar growth in G(2), while spindle pole body-nucleated astral microtubules participate in nuclear migration in M and early G(1). Conditional mutants of an essential alpha-tubulin gene from U. maydis, tub1, confirmed a role for interphase microtubules in determination of cell polarity and growth. Observation of GFP-Tub1 fusion protein revealed that spindle pole body-independent and astral microtubules are dynamic, with elongation and shrinkage rates comparable to those found in vertebrate systems. In addition, very fast depolymerization was measured within microtubule bundles. Unexpectedly, interphase microtubules underwent bending and rapid translocations within the cell, suggesting that unknown motor activities participate in microtubule organization in U. maydis. Movies available on-line: http://www.biologists.com/JCS/movies/jcs1792.html

1992 ◽  
Vol 70 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Kerry O'Donnell

Meiosis in the smut fungi Ustilago maydis and Ustilago avenae (Basidiomycota, Ustilaginales) was studied by electron microscopy of serial-sectioned freeze substituted basidia. At prophase I, a spindle pole body composed of two globular elements connected by a middle piece was attached to the extranuclear surface of each nucleus. Astral and spindle microtubules were initiated at each globular element at late prophase I to prometaphase I. During spindle initiation, the middle piece disappeared and interdigitating half-spindles entered the nucleoplasm, which was surrounded by discontinuous nuclear envelope together with perinuclear endoplasmic reticulum. Kinetochore pairs at metaphase I were analyzed to obtain a karyotype for each species. The meiotic spindle pole body replicational cycle is described. Key words: electron microscopy, freeze-substitution, meiosis, Ustilago, spindle pole body.


1991 ◽  
Vol 114 (3) ◽  
pp. 515-532 ◽  
Author(s):  
M Snyder ◽  
S Gehrung ◽  
B D Page

The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells.


2017 ◽  
Vol 28 (23) ◽  
pp. 3298-3314 ◽  
Author(s):  
Shruthi Viswanath ◽  
Massimiliano Bonomi ◽  
Seung Joong Kim ◽  
Vadim A. Klenchin ◽  
Keenan C. Taylor ◽  
...  

Microtubule-organizing centers (MTOCs) form, anchor, and stabilize the polarized network of microtubules in a cell. The central MTOC is the centrosome that duplicates during the cell cycle and assembles a bipolar spindle during mitosis to capture and segregate sister chromatids. Yet, despite their importance in cell biology, the physical structure of MTOCs is poorly understood. Here we determine the molecular architecture of the core of the yeast spindle pole body (SPB) by Bayesian integrative structure modeling based on in vivo fluorescence resonance energy transfer (FRET), small-angle x-ray scattering (SAXS), x-ray crystallography, electron microscopy, and two-hybrid analysis. The model is validated by several methods that include a genetic analysis of the conserved PACT domain that recruits Spc110, a protein related to pericentrin, to the SPB. The model suggests that calmodulin can act as a protein cross-linker and Spc29 is an extended, flexible protein. The model led to the identification of a single, essential heptad in the coiled-coil of Spc110 and a minimal PACT domain. It also led to a proposed pathway for the integration of Spc110 into the SPB.


2008 ◽  
Vol 19 (4) ◽  
pp. 1646-1662 ◽  
Author(s):  
Yannick Gachet ◽  
Céline Reyes ◽  
Thibault Courthéoux ◽  
Sherilyn Goldstone ◽  
Guillaume Gay ◽  
...  

In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. We have studied chromosome recapture in the fission yeast Schizosaccharomyces pombe. We show by live cell analysis that lost kinetochores interact laterally with intranuclear microtubules (INMs) and that both microtubule depolymerization (end-on pulling) and minus-end–directed movement (microtubule sliding) contribute to chromosome retrieval to the spindle pole body (SPB). We find that the minus-end–directed motor Klp2 colocalizes with the kinetochore during its transport to the SPB and contributes to the effectiveness of retrieval by affecting both end-on pulling and lateral sliding. Furthermore, we provide in vivo evidence that Dam1, a component of the DASH complex, also colocalizes with the kinetochore during its transport and is essential for its retrieval by either of these mechanisms. Finally, we find that the position of the unattached kinetochore correlates with the size and orientation of the INMs, suggesting that chromosome recapture may not be a random process.


2002 ◽  
Vol 156 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Andrea R. Castillo ◽  
Janet B. Meehl ◽  
Garry Morgan ◽  
Amy Schutz-Geschwender ◽  
Mark Winey

Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1–8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.


1999 ◽  
Vol 91 (4-5) ◽  
pp. 291-304 ◽  
Author(s):  
Michael Knop ◽  
Gislene Pereira ◽  
Elmar Schiebel

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Judith Gunzelmann ◽  
Diana Rüthnick ◽  
Tien-chen Lin ◽  
Wanlu Zhang ◽  
Annett Neuner ◽  
...  

Stu2/XMAP215/ZYG-9/Dis1/Alp14/Msps/ch-TOG family members in association with with γ-tubulin complexes nucleate microtubules, but we know little about the interplay of these nucleation factors. Here, we show that the budding yeast Stu2 in complex with the γ-tubulin receptor Spc72 nucleates microtubules in vitro without the small γ-tubulin complex (γ-TuSC). Upon γ-TuSC addition, Stu2 facilitates Spc72–γ-TuSC interaction by binding to Spc72 and γ-TuSC. Stu2 together with Spc72–γ-TuSC increases microtubule nucleation in a process that is dependent on the TOG domains of Stu2. Importantly, these activities are also important for microtubule nucleation in vivo. Stu2 stabilizes Spc72–γ-TuSC at the minus end of cytoplasmic microtubules (cMTs) and an in vivo assay indicates that cMT nucleation requires the TOG domains of Stu2. Upon γ-tubulin depletion, we observed efficient cMT nucleation away from the spindle pole body (SPB), which was dependent on Stu2. Thus, γ-TuSC restricts cMT assembly to the SPB whereas Stu2 nucleates cMTs together with γ-TuSC and stabilizes γ-TuSC at the cMT minus end.


1991 ◽  
Vol 69 (8) ◽  
pp. 1795-1803 ◽  
Author(s):  
Mary L. Berbee ◽  
Robert Bauer ◽  
F. Oberwinkler

Freeze-substituted basidia of the smut fungus Microbotryum violaceum (Ustilaginales, Basidiomycotina) were examined electron microscopically with particular attention to the meiotic spindle pole body cycle and cytoplasmic characters of phylogenetic significance. Prophase basidia contained a subapical cluster of vesicles and tubules. During prophase, the spindle pole body consisted of two globular elements connected by a middle piece. The spindle pole body had an electron-opaque layer near the nucleus, and each globular element was bisected by an electron-opaque disk. The meiosis I spindle extended between two monoglobular, disc-containing spindle pole bodies. During interphase I and II, septa lacking pores divided the basidium between daughter nuclei. In interphase I, a putative new spindle pole body appeared between the nuclear envelope and the monoglobular spindle pole body residual from the first division. In meiosis II, a spindle was again established between two monoglobular spindle pole bodies, each of which again contained an electron-opaque disc. The cytoplasmic characters of M. violaceum are compared with those of Ustilago maydis and Sphacelotheca polygoni-serrulati. Key words: Microbotryum violaceum, basidiomycete, Ustilaginales, spindle pole body, freeze-substitution, ultrastructure.


1994 ◽  
Vol 107 (7) ◽  
pp. 1725-1735 ◽  
Author(s):  
T. Yoshida ◽  
T. Toda ◽  
M. Yanagida

A calcineurin (type 2B)-like protein phosphatase gene designated ppb1+ was isolated from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence was 57% identical to rat PP2B alpha. ppb1 null mutant could form colonies at 33 degrees C but the size of the colonies was small at 22 degrees C. Cytokinesis was greatly delayed at 22 degrees C, and a large number of multi-septate cells were produced. The cell polarity control was impaired, causing branched cells. ppb1 null was virtually sterile. These phenotypes were rescued by a plasmid carrying the ppb1+ gene. Multi-septate cells were also produced in wild type at 22 degrees C by cyclosporin A, an inhibitor of calcineurin. This drug effect was enhanced in stst1 null mutant, which was hypersensitive to various drugs and cations. ppb1 null was not affected by cyclosporin A, consistent with the hypothesis that ppb1 is its target. Double-mutant analysis indicated that ppb1 had a function related to that of two other phosphatases, type 1-like dis2 and 2A-like ppa2.ppb1 null-sts1 null showed the severe multi-septate phenotype in the absence of cyclosporin A. ppb1+ and sts1+ gene functions are related. The double mutant ppb1-sts5 was lethal, indicating that the ppb1+ gene shared an essential function with the sts5+ gene. Overexpression of ppb1+ caused anomalies in cell and nuclear shape, microtubule arrays and spindle pole body positioning in interphase cells. Thus the ppb1+ gene appears to be involved in cytokinesis, mating, transport, nuclear and spindle pole body positioning, and cell shape.


1996 ◽  
Vol 132 (5) ◽  
pp. 903-914 ◽  
Author(s):  
D B Friedman ◽  
H A Sundberg ◽  
E Y Huang ◽  
T N Davis

Spc110p (Nuf1p) is an essential component of the yeast microtubule organizing center, or spindle pole body (SPB). Asynchronous wild-type cultures contain two electrophoretically distinct isoforms of Spc110p as detected by Western blot analysis, suggesting that Spc110p is modified in vivo. Both isoforms incorporate 32Pi in vivo, suggesting that Spc110p is post-translationally modified by phosphorylation. The slower-migrating 120-kD Spc110p isoform after incubation is converted to the faster-migrating 112-kD isoform after incubation with protein phosphatase PP2A, and specific PP2A inhibitors block this conversion. Thus, additional phosphorylation of Spc110p at serine and/or threonine residues gives rise to the slower-migrating 120-kD isoform. The 120-kD isoform predominates in cells arrested in mitosis by the addition of nocodazole. However, the 120-kD isoform is not detectable in cells grown to stationary phase (G0) or in cells arrested in G1 by the addition of alpha-factor. Temperature-sensitive cell division cycle (cdc) mutations demonstrate that the presence of the 120-kD isoform correlates with mitotic spindle formation but not with SPB duplication. In a synchronous wild-type population, the additional serine/threonine phosphorylation that gives rise to the 120-kD isoform appears as cells are forming the mitotic spindle and diminishes as cells enter anaphase. None of several sequences similar to the consensus for phosphorylation by the Cdc28p (cdc2p34) kinase is important for these mitosis-specific phosphorylations or for function. Carboxy-terminal Spc110p truncations lacking the calmodulin binding site can support growth and are also phosphorylated in a cell cycle-specific manner. Further truncation of the Spc110p carboxy terminus results in mutant proteins that are unable to support growth and now migrate as single species. Collectively, these results provide the first evidence of a structural component of the SPB that is phosphorylated during spindle formation and dephosphorylated as cells enter anaphase.


Sign in / Sign up

Export Citation Format

Share Document