GPI anchor transamidase of Trypanosoma brucei: in vitro assay of the recombinant protein and VSG anchor exchange

2002 ◽  
Vol 115 (12) ◽  
pp. 2529-2539
Author(s):  
Xuedong Kang ◽  
Alexander Szallies ◽  
Marc Rawer ◽  
Hartmut Echner ◽  
Michael Duszenko

GPI8 from Trypanosoma brucei was cloned and expressed in Escherichia coli. TbGPI8 encodes a 37 kDa protein (35 kDa after removal of the putative signal sequence) with a pI of 5.5. It contains one potential N-glycosylation site near the N-terminus but no C-terminal hydrophobic region. Enzyme activity assays using trypanosomal lysates or recombinant TbGpi8 exhibited cleavage of the synthetic peptide acetyl-S-V-L-N-aminomethyl-coumarine, indicating that TbGpi8 is indeed directly involved in the proteolytic processing of the GPI anchoring signal. Intracellular localization of TbGpi8 within tubular structures, such as the endoplasmic reticulum, was observed by using specific anti-TbGpi8 antibodies. The transamidase mechanism of GPI anchoring was studied in bloodstream forms of Trypanosoma brucei using media containing hydrazine or biotinylated hydrazine. In the presence of the latter nucleophile, part of the newly formed VSG was linked to this instead of the GPI anchor and was not transferred to the cell surface. VSG-hydrazine-biotin was detected by streptavidin in western blots and intracellularly in Golgi-like compartments.

1988 ◽  
Vol 251 (1) ◽  
pp. 147-155 ◽  
Author(s):  
C M Kunce ◽  
R N Trelease ◽  
R B Turley

As part of our research on peroxisome biogenesis, catalase was purified from cotyledons of dark-grown cotton (Gossypium hirsutum L.) seedlings and monospecific antibodies were raised in rabbits. Purified catalase appeared as three distinct electrophoretic forms in non-denaturing gels and as a single protein band (with a subunit Mr of 57,000) on silver-stained SDS/polyacrylamide gels. Western blots of crude extracts and isolated peroxisomes from cotton revealed one immunoreactive polypeptide with the same Mr (57,000) as the purified enzyme, indicating that catalase did not undergo any detectable change in Mr during purification. Synthesis in vitro, directed by polyadenylated RNA isolated from either maturing seeds or cotyledons of dark-grown cotton seedlings, revealed a predominant immunoreactive translation product with a subunit Mr of 57,000 and an additional minor immunoreactive product with a subunit Mr of 64000. Labelling studies in vivo revealed newly synthesized monomers of both the 64000- and 57,000-Mr proteins present in the cytosol and incorporation of both proteins into the peroxisome without proteolytic processing. Within the peroxisome, the 57,000-Mr catalase was found as an 11S tetramer; whereas the 64,000-Mr protein was found as a relatively long-lived 20S aggregate (native Mr approx. 600,000-800,000). The results strongly indicate that the 64,000-Mr protein (catalase?) is not a precursor to the 57,000-Mr catalase and that cotton catalase is translated on cytosolic ribosomes without a cleavable transit or signal sequence.


1990 ◽  
Vol 10 (9) ◽  
pp. 4545-4554
Author(s):  
J M Sommer ◽  
J A Thissen ◽  
M Parsons ◽  
C C Wang

Glycosomes are microbody organelles found in kinetoplastida, where they serve to compartmentalize the enzymes of the glycolytic pathway. In order to identify the mechanism by which these enzymes are targeted to the glycosome, we have modified the in vitro import assay developed by Dovey et al. (Proc. Natl. Acad. Sci. USA 85:2598-2602, 1988). This assay measures the uptake of in vitro-translated Trypanosoma brucei glycosomal 3-phosphoglycerate kinase (gPGK) by purified glycosomes. Up to 50% of the total 35S-gPGK in the glycosomal fraction was resistant to extraction by 3 M urea or treatment with proteinase K (500 micrograms/ml). The glycosome-associated 35S-gPGK could be chemically cross-linked to the endogenous glycosomal proteins to form a sodium dodecyl sulfate-resistant complex, suggesting that it is close to the intraglycosomal protein matrix. Deoxycholate solubilized the glycosome and thereby rendered the glycosome-associated 35S-gPGK fully susceptible to proteinase K. However, the glycosome-associated 35S-gPGK was not digested by proteinase K in the presence of Triton X-100, which cannot dissolve the glycosomal protein core. The 35S-gPGK synthesized in vitro was able to bind directly to protein cores, where it became resistant to urea extraction and proteinase K digestion. However, the 35S-gPGK-protein core complex exhibited a much higher density than the 35S-gPGK-glycosome complex and was readily separable in sucrose gradients. Thus, in our in vitro import assay, the 35S-gPGK appeared to associate with intact glycosomes, possibly reflecting import of protein into the organelle. Complete denaturation of the 35S-gPGK in 8 M urea prior to the assay enhanced the efficiency of its association with glycosomes. Native gPGK did not compete with the association of in vitro-translated gPGK unless it was denatured. The assay exhibited time and temperature dependence, but it did not require externally added ATP and was not inhibited by the nonhydrolyzable analogs adenosine-5'-(beta,gamma-imido)-triphosphate and gamma-S-ATP. However, the presence of 20 to 30 microM ATP inside the glycosome may fulfill the requirement for protein import.


2018 ◽  
Vol 86 (4) ◽  
pp. 47 ◽  
Author(s):  
Anna Kryshchyshyn ◽  
Danylo Kaminskyy ◽  
Igor Nektegayev ◽  
Philippe Grellier ◽  
Roman Lesyk

Recently, thiazolidinone derivatives have been widely studied as antiparasitic agents. Previous investigations showed that fused 4-thiazolidinone derivatives (especially thiopyranothiazoles) retain pharmacological activity of their synthetic precursors—simple 5-ene-4-thiazolidinones. A series of isothiochromeno[4a,4-d][1,3] thiazoles was investigated in an in vitro assay towards bloodstream forms of Trypanosoma brucei brucei. All compounds inhibited parasite growth at concentrations in the micromolar range. The established low acute toxicity of this class of compounds along with a good trypanocidal profile indicates that isothiochromenothiazole derivatives may be promising for designing new antitrypanosomal drugs.


1987 ◽  
Vol 7 (8) ◽  
pp. 2838-2844
Author(s):  
M R Mowatt ◽  
C E Clayton

Trypanosoma brucei undergoes many morphological and biochemical changes during transformation from the bloodstream trypomastigote to the insect procyclic trypomastigote form. We cloned and determined the complete nucleotide sequence of a developmentally regulated cDNA. The corresponding mRNA was abundant in in vitro-cultivated procyclics but absent in bloodstream forms. The trypanosome genome contains eight genes homologous to this cDNA, arranged as four unlinked pairs of tandem repeats. The longest open reading frame of the cDNA predicts a protein of 15 kilodaltons, the central portion of which consists of 29 tandem glutamate-proline dipeptides. The repetitive region is preceded by an amino-terminal signal sequence and followed by a hydrophobic domain that could serve as a membrane anchor; the mRNA was found on membrane-bound polyribosomes. These results suggest that the protein is membrane associated.


1986 ◽  
Vol 6 (4) ◽  
pp. 1343-1348 ◽  
Author(s):  
M Hannink ◽  
D J Donoghue

The v-sis oncogene and its cellular homolog c-sis encode chain B of platelet-derived growth factor. Cells transformed by v-sis produce a platelet-derived growth factor-related molecule which is able to stimulate the platelet-derived growth factor receptor in an autocrine fashion. Site-directed mutagenesis was used to construct several mutations which substitute charged residues for hydrophobic residues in the proposed signal sequence of the v-sis gene product. Two of these mutations resulted in the synthesis of altered v-sis gene products with an unexpected nuclear location and a loss of biological activity. We also report here the intracellular localization of the v-sis gene product to the endoplasmic reticulum-Golgi compartment, where signal sequence cleavage and N-linked glycosylation occur. The v-sis gene product contains no transmembrane regions, as it is completely protected within isolated microsomes from trypsin proteolysis. Site-directed mutagenesis was also used to alter a proposed proteolytic processing site in the v-sis gene product. This mutant v-sis gene, which encodes Asn-Ser in place of Lys-Arg at residues 110 to 111, was found to retain full biological activity.


2000 ◽  
Vol 346 (3) ◽  
pp. 603-610 ◽  
Author(s):  
Injune KIM ◽  
Hwan-Gyu KIM ◽  
Hyun KIM ◽  
Hong-Hee KIM ◽  
Sung Kwang PARK ◽  
...  

Using degenerate PCR we isolated a cDNA encoding a novel 406- and 410-amino acid protein from human and mouse embryonic cDNAs and have designated it ‘hepatic fibrinogen/angiopoietin-related protein’ (HFARP). The N-terminal and C-terminal portions of HFARP contain the characteristic coiled-coil domains and fibrinogen-like domains that are conserved in angiopoietins. In human and mouse tissues, HFARP mRNA is specifically expressed in the liver. HFARP mRNA and protein are mainly present in the hepatocytes. HFARP has a highly hydrophobic region at the N-terminus that is typical of a secretory signal sequence and one consensus glycosylation site. Recombinant HFARP expressed in COS-7 cells is secreted and glycosylated. HFARP protein is present not only in the hepatocytes, but also in the circulating blood. Recombinant HFARP acts as an apoptosis survival factor for vascular endothelial cells, but does not bind to Tie1 or Tie2 (endothelial-cell tyrosine kinase receptors). These results suggest that HFARP may exert a protective function on endothelial cells through an endocrine action.


1987 ◽  
Vol 104 (6) ◽  
pp. 1705-1714 ◽  
Author(s):  
J Finidori ◽  
L Rizzolo ◽  
A Gonzalez ◽  
G Kreibich ◽  
M Adesnik ◽  
...  

The co-translational insertion of polypeptides into endoplasmic reticulum membranes may be initiated by cleavable amino-terminal insertion signals, as well as by permanent insertion signals located at the amino-terminus or in the interior of a polypeptide. To determine whether the location of an insertion signal within a polypeptide affects its function, possibly by affecting its capacity to achieve a loop disposition during its insertion into the membrane, we have investigated the functional properties of relocated insertion signals within chimeric polypeptides. An artificial gene encoding a polypeptide (THA-HA), consisting of the luminal domain of the influenza hemagglutinin preceded by its amino-terminal signal sequence and linked at its carboxy-terminus to an intact prehemagglutinin polypeptide, was constructed and expressed in in vitro translation systems containing microsomal membranes. As expected, the amino-terminal signal initiated co-translational insertion of the hybrid polypeptide into the membranes. The second, identical, interiorized signal, however, was not recognized by the signal peptidase and was translocated across the membrane. The failure of the interiorized signal to be cleaved may be attributed to the fact that it enters the membrane as part of a translocating polypeptide and therefore cannot achieve the loop configuration that is thought to be adopted by signals that initiate insertion. The finding that the interiorized signal did not halt translocation of downstream sequences, even though it contains a hydrophobic region and must enter the membrane in the same configuration as natural stop-transfer signals, indicates that the HA insertion signal lacks essential elements of halt transfer signals that makes the latter effective membrane-anchoring domains. When the amino-terminal insertion signal of the THA-HA chimera was deleted, the interior signal was incapable of mediating insertion, probably because of steric hindrance by the folded preceding portions of the chimera. Several chimeras were constructed in which the interiorized signal was preceded by polypeptide segments of various lengths. A signal preceded by a segment of 111 amino acids was also incapable of initiating insertion, but insertion took place normally when the segment preceding the signal was only 11-amino acids long.(ABSTRACT TRUNCATED AT 400 WORDS)


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1272
Author(s):  
Julia Tobacyk ◽  
Grishma KC ◽  
Lee Ann MacMillan-Crow

Kidneys from deceased donors undergo cold storage (CS) preservation before transplantation. Although CS is a clinical necessity for extending organ quality preservation, CS causes mitochondrial and renal injury. Specifically, many studies, including our own, have shown that the triggering event of CS-induced renal injury is mitochondrial reactive oxygen species (mROS). Here, we explored the role of OMA1-depedent OPA1 proteolytic processing in rat kidney proximal tubular epithelial (NRK) cells in an in vitro model of renal CS (18 h), followed by rewarming (6 h) (CS + RW). The involvement of mROS was evaluated by stably overexpressing manganese superoxide dismutase (MnSOD), an essential mitochondrial antioxidant enzyme, in NRK cells. Western blots detected rapid OPA1 proteolytic processing and a decrease in ATP-dependent cell viability in NRK cells subjected to CS + RW compared to control cells. Small interfering RNA (siRNA) knockdown of OMA1 reduced proteolytic processing of OPA1, suggesting that OMA1 is responsible for OPA1 proteolytic processing during CS + RW-induced renal injury. Overexpression of MnSOD during CS + RW reduced cell death, mitochondrial respiratory dysfunction, and ATP-dependent cell viability, but it did not prevent OMA1-dependent OPA1 processing. These data show for the first time that OMA1 is responsible for proteolytically cleaving OPA1 in a redox-independent manner during renal cell CS.


Sign in / Sign up

Export Citation Format

Share Document