NCAM regulates cell motility

2002 ◽  
Vol 115 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Søren Prag ◽  
Eugene A. Lepekhin ◽  
Kateryna Kolkova ◽  
Rasmus Hartmann-Petersen ◽  
Anna Kawa ◽  
...  

Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59fyn with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine inhibitor of NCAM-negative cell locomotion through a heterophilic interaction with a cell-surface receptor. As we showed that the two N-terminal immunoglobulin modules of NCAM, which are known to bind to heparin, were responsible for this inhibition, we presume that this receptor is a heparan sulfate proteoglycan. A model for the inhibitory effect of NCAM is proposed, which involves competition between NCAM and extracellular components for the binding to membrane-associated heparan sulfate proteoglycan.

1985 ◽  
Vol 100 (1) ◽  
pp. 56-63 ◽  
Author(s):  
D Schubert ◽  
M LaCorbiere

Embryonic chick neural retina cells release glycoprotein complexes, termed adherons, into their culture medium. When absorbed onto the surface of petri dishes, neural retina adherons increase the initial rate of neural retina cell adhesion. In solution they increase the rate of cell-cell aggregation. Cell-cell and adheron-cell adhesions of cultured retina cells are selectively inhibited by heparan-sulfate glycosaminoglycan, but not by chondroitin sulfate or hyaluronic acid, suggesting that a heparan-sulfate proteoglycan may be involved in the adhesion process. We isolated a heparan-sulfate proteoglycan from the growth-conditioned medium of neural retina cells, and prepared an antiserum against it. Monovalent Fab' fragments of these antibodies completely inhibited cell-adheron adhesion, and partially blocked spontaneous cell-cell aggregation. An antigenically and structurally similar heparan-sulfate proteoglycan was isolated from the cell surface. This proteoglycan bound directly to adherons, and when absorbed to plastic, stimulated cell-substratum adhesion. These data suggest that a heparan-sulfate proteoglycan on the surface of chick neural retina cells acted as a receptor for adhesion-mediating glycoprotein complexes (adherons).


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Shin Murakami ◽  
Akiko Takenaka-Uema ◽  
Tomoya Kobayashi ◽  
Kentaro Kato ◽  
Masayuki Shimojima ◽  
...  

ABSTRACT Akabane virus (AKAV) and Schmallenberg virus (SBV) are members of the genus Orthobunyavirus, which are transmitted by arthropod vectors with a broad cellular tropism in vitro as well as in vivo. Both AKAV and SBV cause arthrogryposis-hydranencephaly syndrome in ruminants. The main cellular receptor and attachment factor for entry of these orthobunyaviruses are unknown. Here, we found that AKAV and SBV infections were inhibited by the addition of heparin or enzymatic removal of cell surface heparan sulfates. To confirm this finding, we prepared heparan sulfate proteoglycan (HSPG)-knockout (KO) cells by using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system and measured the quantities of binding of these viruses to cell surfaces. We observed a substantial reduction in AKAV and SBV binding to cells, limiting the infections by these viruses. These data demonstrate that HSPGs are important cellular attachment factors for AKAV and SBV, at least in vitro, to promote virus replication in susceptible cells. IMPORTANCE AKAV and SBV are the etiological agents of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic losses in the livestock industry. Here, we identified heparan sulfate proteoglycan as a major cellular attachment factor for the entry of AKAV and SBV. Moreover, we found that heparin is a strong inhibitor of AKAV and SBV infections. Revealing the molecular mechanisms of virus-host interactions is critical in order to understand virus biology and develop novel live attenuated vaccines.


Diabetes ◽  
1982 ◽  
Vol 31 (2) ◽  
pp. 185-188 ◽  
Author(s):  
D. H. Rohrbach ◽  
J. R. Hassell ◽  
H. K. Kleinman ◽  
G. R. Martin

2016 ◽  
Vol 13 (4) ◽  
pp. 528-533 ◽  
Author(s):  
Xuemei Lu ◽  
Jie Wang ◽  
Xiaobao Jin ◽  
Yanting Huang ◽  
Wenting Zeng ◽  
...  

Pancreas ◽  
1994 ◽  
Vol 9 (6) ◽  
pp. 758-763 ◽  
Author(s):  
Zhao-hui Wang ◽  
Tadao Manabe ◽  
Gakuji Ohshio ◽  
Takashi Imamura ◽  
Tsunehiro Yoshimura ◽  
...  

1990 ◽  
Vol 265 (32) ◽  
pp. 19980-19989
Author(s):  
R V Iozzo ◽  
I Kovalszky ◽  
N Hacobian ◽  
P K Schick ◽  
J S Ellingson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document