Mutational analysis of the variant surface glycoprotein GPI-anchor signal sequence inTrypanosoma brucei

2002 ◽  
Vol 115 (4) ◽  
pp. 805-816 ◽  
Author(s):  
Ulrike Böhme ◽  
George A. M. Cross

The variant surface glycoproteins (VSG) of Trypanosoma brucei are anchored to the cell surface via a glycosylphosphatidylinositol (GPI) anchor. All GPI-anchored proteins are synthesized with a C-terminal signal sequence,which is replaced by a GPI-anchor in a rapid post-translational transamidation reaction. VSG GPI signal sequences are extraordinarily conserved. They contain either 23 or 17 amino acids, a difference that distinguishes the two major VSG classes, and consist of a spacer sequence followed by a more hydrophobic region. The ω amino acid, to which GPI is transferred, is either Ser,Asp or Asn, the ω+2 amino acid is always Ser, and the ω+7 amino acid is almost always Lys. In order to determine whether this high conservation is necessary for GPI anchoring, we introduced several mutations into the signal peptide. Surprisingly, changing the most conserved amino acids, at positions ω+1, ω+2 and ω+7, had no detectable effect on the efficiency of GPI-anchoring or on protein abundance. Several more extensive changes also had no discernable impact on GPI-anchoring. Deleting the entire 23 amino-acid signal sequence or the 15 amino-acid hydrophobic region generated proteins that were not anchored. Instead of being secreted, these truncated proteins accumulated in the endoplasmic reticulum prior to lysosomal degradation. Replacing the GPI signal sequence with a proven cell-surface membrane-spanning domain reduced expression by about 99%and resulted not in cell surface expression but in accumulation close to the flagellar pocket and in non-lysosomal compartments. These results indicate that the high conservation of the VSG GPI signal sequence is not necessary for efficient expression and GPI attachment. Instead, the GPI anchor is essential for surface expression of VSG. However, because the VSG is a major virulence factor, it is possible that small changes in the efficiency of GPI anchoring,undetectable in our experiments, might have influenced the evolution of VSG GPI signal sequences.

2014 ◽  
Vol 89 (5) ◽  
pp. 2530-2542 ◽  
Author(s):  
Harry H. Matundan ◽  
Kevin R. Mott ◽  
Aslam Abbasi Akhtar ◽  
Joshua J. Breunig ◽  
Homayon Ghiasi

ABSTRACTTo investigate the role of the signal sequences of herpes simplex virus 1 (HSV-1) gK on virus replication and viral pathogenesis, we constructed recombinant viruses with or without mutations within the signal sequences of gK. These recombinant viruses expressed two additional copies of the mutated (MgK) or native (NgK) form of the gK gene in place of the latency-associated transcript with a myc epitope tag to facilitate detection at their 3′ ends. The replication of MgK virus was similar to that of NgK bothin vitroandin vivo, as well as in the trigeminal ganglia (TG) of latently infected mice. The levels of gB and gK transcripts in the corneas, TG, and brains of infected mice on days 3 and 5 postinfection were markedly virus and time dependent, as well as tissue specific. Mutation in the signal sequence of gK in MgK virus blocked cell surface expression of gK-myc in rabbit skin cells, increased 50% lethal dose, and decreased corneal scarring in ocularly infected mice compared to the NgK or revertant (RgK) virus. MgK and NgK viruses, and not the RgK virus, showed a reduced extent of explant reactivation at the lower dose of ocular infection but not at the higher dose. However, the time of reactivation was not affected by overexpression of the different forms of gK. Taken together, these results strongly suggest that the 8mer peptide (ITAYGLVL) within the signal sequence of gK promotes cell surface expression of gK in infected cells and ocular pathogenesis in infected mice.IMPORTANCEIn this study, we show for the first time that mutations within the signal sequence of gK blocked cell surface expression of inserted recombinant gKin vitro. Furthermore, this blockage in cell surface expression was correlated with higher 50% lethal dose and less corneal scarringin vivo. Thus, these studies point to a key role for the 8mer within the signal sequence of gK in HSV-1-induced pathogenicity.


2015 ◽  
Vol 90 (5) ◽  
pp. 2285-2293 ◽  
Author(s):  
Britta S. Möhl ◽  
Christina Schröter ◽  
Barbara G. Klupp ◽  
Walter Fuchs ◽  
Thomas C. Mettenleiter ◽  
...  

ABSTRACTHerpesviruses infect cells using the conserved core fusion machinery composed of glycoprotein B (gB) and gH/gL. The gH/gL complex plays an essential but still poorly characterized role in membrane fusion and cell tropism. Our previous studies demonstrated that the conserved disulfide bond (DB) C278/C335 in domain II (D-II) of Epstein-Barr virus (EBV) gH has an epithelial cell-specific function, whereas the interface of D-II/D-III is involved in formation of the B cell entry complex by binding to gp42. To extend these studies, we compared gH of the alphaherpesvirus pseudorabies virus (PrV) with gH of the gammaherpesvirus EBV to identify functionally equivalent regions critical for gH function during entry. We identified several conserved amino acids surrounding the conserved DB that connects three central helices of D-III of PrV and EBV gH. The present study verified that the conserved DB and several contacting amino acids in D-III modulate cell surface expression and thereby contribute to gH function. In line with this finding, we found that DB C404/C439 and T401 are important for cell-to-cell spread and efficient entry of PrV. This parallel comparison between PrV and EBV gH function brings new insights into how gH structure impacts fusion function during herpesvirus entry.IMPORTANCEThe alphaherpesvirus PrV is known for its neuroinvasion, whereas the gammaherpesvirus EBV is associated with cancer of epithelial and B cell origin. Despite low amino acid conservation, PrV gH and EBV gH show strikingly similar structures. Interestingly, both PrV gH and EBV gH contain a structural motif composed of a DB and supporting amino acids which is highly conserved within theHerpesviridae. Our study verified that PrV gH uses a minimal motif with the DB as the core, whereas the DB of EBV gH forms extensive connections through hydrogen bonds to surrounding amino acids, ensuring the cell surface expression of gH/gL. Our study verifies that the comparative analysis of distantly related herpesviruses, such as PrV and EBV, allows the identification of common gH functions. In addition, we provide an understanding of how functional domains can evolve over time, resulting in subtle differences in domain structure and function.


2003 ◽  
Vol 374 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Zhonghua LIU ◽  
Anna ZOLKIEWSKA ◽  
Michal ZOLKIEWSKI

Deletion of a single glutamate in torsinA correlates with early-onset dystonia, the most severe form of a neurological disorder characterized by uncontrollable muscle contractions. TorsinA is targeted to the ER (endoplasmic reticulum) in eukaryotic cells. We investigated the processing and membrane association of torsinA and the dystonia-associated Glu-deletion mutant (torsinAΔE). We found that the signal sequence of torsinA (residues 1–20 from the 40 amino-acid long N-terminal hydrophobic region) is cleaved in Drosophila S2 cells, as shown by the N-terminal sequencing after partial protein purification. TorsinA is not secreted from S2 cells. Consistently, sodium carbonate extraction and Triton X-114 treatment showed that torsinA is associated with the ER membrane in CHO (Chinese-hamster ovary) cells. In contrast, a variant of torsinA that contains the native signal sequence without the hydrophobic region Ile24–Pro40 does not associate with the membranes in CHO cells, and a truncated torsinA without the 40 N-terminal amino acids is secreted in the S2 culture. Thus the 20-amino-acid-long hydrophobic segment in torsinA, which remains at the N-terminus after signal-peptide cleavage, is responsible for the membrane anchoring of torsinA. TorsinAΔE showed similar cleavage of the 20 N-terminal amino acids and membrane association properties similar to wild-type torsinA but, unlike the wild-type, torsinAΔE was not secreted in the S2 culture even after deletion of the membrane-anchoring segment. This indicates that the dystonia-associated mutation produces a structurally distinct, possibly misfolded, form of torsinA, which cannot be properly processed in the secretory pathway of eukaryotic cells.


2006 ◽  
Vol 401 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Chiharu Sogawa ◽  
Kei Kumagai ◽  
Norio Sogawa ◽  
Katsuya Morita ◽  
Toshihiro Dohi ◽  
...  

The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl−-dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.


2010 ◽  
Vol 112 (4) ◽  
pp. 913-923 ◽  
Author(s):  
Iku Utsunomiya ◽  
Shinya Tanabe ◽  
Tomonori Terashi ◽  
Souichi Ikeno ◽  
Tadashi Miyatake ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2181-2181
Author(s):  
Marloes R. Tijssen ◽  
Franca di Summa ◽  
Sonja Van den Oudenrijn ◽  
Carlijn Voermans ◽  
C.Ellen Van der Schoot ◽  
...  

Abstract Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare disorder that presents with severe thrombocytopenia and absence of megakaryocytes in the bone marrow. The disease may develop into bone marrow aplasia. In vitro, CD34-positive hematopoietic progenitor cells from CAMT patients did not show any megakaryocyte formation in a Tpo-driven expansion culture. We and others found genetic defects in the gene encoding the Tpo receptor, c-mpl (Van den Oudenrijn et al., Br J Haematol.2002, 117: 390–398 and Ballmaier et al., Ann N Y Acad Sci.2003, 996: 17–25). In our patients, we found four mutations that predicted amino-acid substitutions, of which three in the extracellular domain; Arg102Pro, Pro136His and Arg257Cys, and one in the intracellular signaling domain (Pro635Leu), which may result in either defective Tpo-binding and/or signaling. To investigate this, we transfected full-length Mpl (wt and mutants) into the erythroleukemic cell line K562 and truncated Mpl (encompassing the extracellular domain; wt and mutants) into Baby Hamster Kidney (BHK) cells. In the K562 cells, the mRNA level (RQ-PCR) of the Pro136His mutant was severely decreased compared to the wt transfectant, while the mRNA level of the other mutants was comparable to that of wt. On Western blot, wt Mpl migrated as two, presumably differently glycosylated, bands of 75 kD and 72 kD. The mutants showed an altered migration pattern, which might result from differences in glycosylation. With the Pro635Leu mutant lower signals were obtained when equal amounts of total protein were loaded. Since the Mpl mRNA level was comparable to that of wt, this suggests a higher level of protein degradation. Upon transfection of the Arg102Pro and the Arg257Cys mutants in BHK cells, we observed that these mutants did not gain endo-H resistency, which suggests an aberrant processing of these mutant Mpls through the Golgi apparatus and retention in the ER. However, in cell fractionation experiments with surface-biotinylated K562 cells, biotinylated wt Mpl and mutant Mpl (except Pro136His) could be detected. Apparently, in K562 cells, the amino-acid substitutions do not impair membrane expression completely. To examine whether the mutant receptors were still able to signal after Tpo incubation, K562 cells were serum-starved and subsequently stimulated with 50 ng/ml rhTpo for 5 to 30 minutes. All mutants, including Pro136His, showed increased ERK phosphorylation after 5 minutes. To summarize, the Pro136His mutant is hardly expressed in the K562 expression model, presumably because of instability of the mRNA, but is still able to induce signaling. In contrast to the results obtained in the BHK model, the Arg102Pro and Arg257Cys mutants, showed cell-surface expression in the K562 cell line. The obtained cell-surface expression in the K562 model may have been significantly increased compared to the in vivo situation on hematopoietic stem cells, because of artificially induced efficient expression. Finally, with a super-physiological concentration of rhTpo, we obtained evidence that all Mpl mutants were able to signal upon Tpo binding. Whether impaired signaling by the Mpl mutants in the presence of physiological levels of Tpo may contribute to the development of CAMT, will be investigated.


2002 ◽  
Vol 16 (4) ◽  
pp. 799-813 ◽  
Author(s):  
Alexander Oksche ◽  
Gabriele Leder ◽  
Susanne Valet ◽  
Matthias Platzer ◽  
Kerstin Hasse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document