Cell Agglutination Mediated by Concanavalin A and the Dynamic State of the Cell Surface

1974 ◽  
Vol 14 (1) ◽  
pp. 197-202
Author(s):  
M. INOUE

The binding of 131I-labelled concanavalin A (131I-Con A) to the cell surface has been studied in Ehrlich ascites tumour cells (EATC) and beef erythrocytes under various conditions. The binding of concanavalin A (Con A) to the cell surface was very specific and the available binding sites were saturated within a few minutes. The amount of 131I-Con A bound to EATC was 4.14 x 107 molecules/cell at 37 °C and 2.12 x 107 molecules/cell at 0 °C. Under these conditions, cell agglutination was observed only at 37 °C and not at 0 °C. However, the binding sites measured at 0 °C were also effective for agglutination at 37 °C. Beef erythrocytes were agglutinated by Con A only after treatment of cells with papain. The number of binding sites for Con A on the cell surface was decreased by this treatment to about half the number present on untreated cells. Various reagents such as colchicine, monoiodoacetic acid, dinitrophenol, rotenone, sodium azide and carboxyl cyanide-m-fluorophenylhydrazone (FCCP) had no effect on Con A-mediated cell agglutination. In contrast, periodate treatment produced a remarkable decrease in the agglutinability of cells. From these data, it is concluded that the cell agglutination induced by Con A was due to the topographical distribution of the surface receptors for the lectin, and not the result of energy-dependent or microtubule-dependent reaction processes. The number and the state of Con A receptors on the cell surface were in a dynamic condition, their conformation, orientation, and/or topographical distribution changing under different conditions.

1975 ◽  
Vol 23 (8) ◽  
pp. 607-617 ◽  
Author(s):  
T Amakawa ◽  
T Barka

The submandibular glands of 4-week-old rats were dissociated by a procedure involving digestions with collagenase and hyaluronidase, chelation of divalent cations and mechanical force. A suspension of single cells was obtained in low yield by centrifugation in a Ficoll-containing medium. Immediately after dissociation and after a culture period of 16-18 hr the dissociated cells were tested for agglutinability by concanavalin A (Con A). Using ferritin (tfer)-conjugated Con A the lectin binding by the isolated acinar cells was also studied. The dissociated cells were agglutinated by low concentrations of Con A and bound Fer-Con A molecules on their entire surface without any indication of polarization of the cell membrane. There was a considerable cell to cell variation in the amount of Fer-Con A binding which was, in general, sparse and patchy. The contact surfaces between agglutinated cells revealed a dense binding of Fer-Con A molecules irrespective of the types of cells participating in the agglutination reaction. Cells cultured for 16-18 hr were no longer agglutinated by Con A. As compared to the freshly dissociated cells the cultured acinar cells revealed a more uniform and denser binding of Fer-Con A molecules. Furthermore, there were more lectin molecules bound to the cell surface corresponding to the basal part of the cell, where the nucleus and most of the rough surface endoplasmic reticulum were located, than to the apical cell surface. It is suggested that the higher density of lectin-binding sites on the cell surface in the vicinity of the cisternae of the rough endoplasmic reticulum indicates insertion sites of newly synthesized membrane glycoproteins.


1980 ◽  
Vol 152 (2) ◽  
pp. 469-474 ◽  
Author(s):  
L M Pfeffer ◽  
E Wang ◽  
I Tamm

Interferon treatment impairs the ability of cells to redistribute cell surface receptors for concanavalin A (Con A). The effect of interferon becomes evident within 3-6 h and is maximal within 36-48 h. Highly purified human fibroblast interferon (> 2 x 10(8) U/mg of protein sp act; concentration; 640 U/ml) caused approximately 85% inhibition of capping of fluorescein-conjugated Con A in interferon-sensitive HeLa-S3 cells at 36 h from the beginning of treatment.


1975 ◽  
Vol 66 (1) ◽  
pp. 76-85 ◽  
Author(s):  
U Rutishauser ◽  
L Sachs

The ability of cells to bind to nylon fibers coated with lectin molecules interspaced with varying numbers of albumin molecules has been analyzed. The cells used were lymphoma cells, normal lymphocytes, myeloid leukemia cells, and normal and transformed fibroblasts, and the fibers were coated with different densities of concanavalin A or the lectins from soybean or wheat germ. Cells fixed with glutaraldehyde did not bind to lectin-coated fibers. The number of cells bound to fibers could be increased by increasing the density of lectin molecules on the fiber, the density of specific receptors on the cell, or the mobility of the receptors. It is suggested that binding of cells to fibers involves alignment and binding of specific cell surface receptors with lectin molecules immobilized on the fibers, and that this alignment requires short-range rapid lateral mobility (RLM) of the receptors. The titration of cell binding to fibers coated with different densities of lectin and albumin has been used to measure the relative RLM of unoccupied cell surface receptors for the lectin. The results indicate a relationship of RLM to lectin-induced cell-to-cell binding. The RLM or receptors for concanavalin A (Con A) was generally found to be higher than that of receptors for the lectins from wheat germ or soybean. Receptor RLM could be decreased by use of metabolic inhibitors or by lowering the temperature. Receptors for Con A had a lower RLM on normal fibroblasts than on SV40-transformed fibroblasts, and trypsinization of normal fibroblasts increased Con A receptor RLM. Normal lymphocytes, lymphoma cells, and lines of myeloid leukemia cells that can be induced to differentiate had a high receptor RLM, whereas lines of myeloid leukemia cells that could not be induced to differentiate had a low receptor RLM. These results suggest that the RLM of Con A receptors is related to the transformation of fibroblasts and the ability of myeloid leukemia cells to undergo differentiation


1981 ◽  
Vol 29 (7) ◽  
pp. 858-863 ◽  
Author(s):  
K Takata ◽  
F Nishiyama ◽  
H Hirano

Cationized ferritin (CF) binding, and its effect on the concanavalin A (Con A) binding pattern were studied by the double technique in monkey peritoneal macrophages. CF particles formed clumps and were internalized when cells were incubated at 37 degrees C. Such cells were fixed, and the Con A binding sites were visualized by the Con A-horseradish peroxidase (HRP) method. Using the same specimen, the distribution of CF particles and the Con A-HRP product was observed under an electron microscope. The redistribution and internalization of CF particles did not affect the continuous label of the cell surface Con A binding sites. These observations suggest the independent mobility of cell surface anionic sites and Con A binding sites.


1978 ◽  
Vol 26 (10) ◽  
pp. 822-828 ◽  
Author(s):  
I Nir

Localization of carbohydrate components in retinal photoreceptor cells and membranes was studied. Frog and rat retinas were fixed with glutaraldehyde and embedded in glycol methacrylate or in a mixture of glycol methacrylate, glutaraldehyde and urea. Thin sections were incubated with ferritin-labeled concanavalin A (F-Con A) and stained with osmium vapors. Intensive binding was observed in both rod and cone outer segments. In the rod inner segment, differential binding of F-Con A was demonstrated. While numerous ferritin granules were observed in the myoid zone, only a few were seen in the ellipsoid zone, except for a local accumulation along the plasma membrane. In the rod outer segment, Con A binding sites were closely associated with the disk membranes. Ferritin granules were observed on both sides of the membranes. The relationship between the localization of Con A binding sites and the orientation of visual pigment molecules within the rod outer segments disk membranes was discussed.


Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 39-51
Author(s):  
Lydie Gualandris ◽  
Pierre Rouge ◽  
Anne-Marie Duprat

The possible involvement of target membrane specific receptor(s) in the transmission of the neural signal leading to activation of the intracellular machinery involved in the process of neural determination, has been examined using lectin probes (Con A, succinylated-ConA, LcA, PsA and SBA). Not only Con A binding sites but many different glycoconjugated molecules (α-Dgalactose, N-acetyl-D-galactosamine, α-D-fucose, N-acetyl-D-glucosamine, etc.) would have to be involved, if neural receptor(s) are invoked to explain initiation of neural induction. We show here that the close involvement of such receptor molecules in neural induction is so far hypothetical and remains to be demonstrated. Moreover we are inclined to the view of Barth and others who suggested that ionic fluxes and physicochemical and electrophysiological properties of the target membrane could play a crucial role in neural induction.


1983 ◽  
Vol 62 (1) ◽  
pp. 287-299
Author(s):  
M.N. Meirelles ◽  
A. Martinez-Palomo ◽  
T. Souto-Padron ◽  
W. De Souza

Untreated mouse peritoneal macrophages as well as macrophages treated with concanavalin A (ConA) were incubated in the presence of untreated or ConA-treated epimastigotes and trypomastigotes of Trypanosoma cruzi. Treatment of epimastigotes or trypomastigotes with ConA increased or decreased their uptake by macrophages, respectively. Treatment of their macrophages with ConA reduced by 70% and increased by five times the ingestion of epimastigotes and trypomastigotes, respectively. These results are discussed in relation to previous studies on the mobility of ConA receptors in the membrane of the parasite. Using fluorescein- or ferritin-labelled ConA we observed that ConA binding sites located on the plasma membrane of macrophages are internalized during endocytosis of T. cruzi, and observed in association with the membrane of the endocytic vacuole. Vacuoles without parasites showed a uniform distribution of ConA binding sites, while these sites were distributed in patches in vacuoles containing parasites. These results, in association with others previously reported, suggest the involvement of glycoproteins and/or glycolipids localized on the cell surface of T. cruzi and macrophages during the T. cruzi-macrophage interaction.


1975 ◽  
Vol 19 (1) ◽  
pp. 11-20
Author(s):  
V.O. Sing ◽  
S. Bartnicki-Garcia

The binding of concanavalin A (Con A) to the cell surface of zoospores and cysts of Phytophthora palmivora was studied by radiometry (125I-Con A), ultraviolet microscopy (fluorescein-Con A) and electron microscopy peroxidase-diaminobenzidine technique). Zoospores were found to secrete during the early stages of encystment a Con A-binding material susceptible to trypsin digestion. This glycoprotein is contained in the so-called peripheral vesicles and is probably responsible for the adhesion of the encysting zoospores to solid surfaces.


1975 ◽  
Vol 19 (1) ◽  
pp. 21-32
Author(s):  
J.G. Collard ◽  
J.H. Temmink

Calculations of the density of Concanavalin A (Con A)-binding sites on normal and transformed fibroblasts have, as yet, been based on the unproven assumption that suspended cells are smooth spheres. We studied the surface morphology of suspended normal and transformed fibroblasts with scanning and transmission electron microscopes, and found a large difference in surface morphology between suspended normal and transformed 3T3 cells. When this difference in surface morphology was taken into account, the estimated cell surface area of normal 3T3 cells was approximately seven times larger than that of transformed 3T3 cells. Since equal numbers of 3H-Con A molecules are bound on normal and transformed cells, the density of Con A-binding sites is approximately seven times greater on transformed than on normal 3T3 cells. The difference in density of Con A-binding sites between normal and transformed fibroblasts might be sufficient to explain the difference in agglutination response, as originally suggested by Burger, and may also be the cause of the different degrees of clustering of Con A-binding sites on the plasma membrane of these cells.


1975 ◽  
Vol 66 (2) ◽  
pp. 392-403 ◽  
Author(s):  
B Storrie

Exposure of CHO-K1 cells in vitro to dibutyryl adenosine cyclic 3',5'-monophosphate (DBcAMP) plus testololactone produces a rapid, reversible antagonism of ligand-induced collection of initially dispersed concanavalin A (Con A) binding sites into a caplike mass. Morphologically, as Con A capping occurs, the cells become less spread and then round completely. With prolonged Con A exposure, cells cultured in either the absence or the presence of DBcAMP plus testololactone cap and round. Capping is blocked by cold treatment and respiratory inhibitors. Colcemid at concentrations greater than 1 muM promotes both Con A capping and cell rounding. Cytochalasin B at similar concentrations inhibits both capping and cell rounding. Treatment of cells with Con A has little effect on intracellular cAMP concentration. Possible mechanisms by which cAMP may modulate the movement of Con A binding sites are discussed.


Sign in / Sign up

Export Citation Format

Share Document