scholarly journals The Membranes of the Basal Labyrinth in Kidney Cells of the Stickleback, Gasterosteus Aculeatus, Studied in Ultrathin Sections and Freeze-Etch Replicas

1974 ◽  
Vol 14 (3) ◽  
pp. 587-609
Author(s):  
S. E. WENDELAARBONGA ◽  
M. VEENHUIS

The structure of the basal labyrinth in kidney cells of freshwater sticklebacks was studied in ultrathin sections (after fixation with permanganate, osmium tetroxide, and combinations of glutaraldehyde with osmium tetroxide) and in freeze-etch replicas (after pretreatment with glutaraldehyde and/or glycerol, or without pretreatment). The structure of the basal labyrinth in sticklebacks, and probably in other teleost species, differs essentially from the type of labyrinth found in kidney cells of mammals like the rat. In the latter animals, the space enclosed by the membranes of the labyrinth is intercellular. In the stickleback the labyrinth consists of an intracellular system of branched membranes lining narrow saccular spaces. These spaces communicate with the exterior of the cells by means of small pores, located in the lateral and basal parts of the outer cell membranes. All chemical fixation procedures used introduced specific structural artifacts. It is concluded that the structure of the basal labyrinth is relatively well preserved after fixation with potassium permanganate, with a mixture of glutaraldehyde and osmium tetroxide, or with osmium tetroxide when applied for 10 min only. The unit-membrane structure was, however, absent after all procedures involving osmium tetroxide. In freeze-etch replicas determinations were made of the numbers of small particles covering the surfaces and fracture faces of the membranes of the basal labyrinth and of the outer cell membranes. The numbers per unit area of surface proved to be markedly constant and specific for each of the four faces of both types of membranes. Specific differences were found between the particle densities of the outer cell membranes and the membranes of the basal labyrinth. This finding points to functional differences between these types of membranes. Particle densities were not influenced by pre-incubation with glycerol. After fixation with glutaraldehyde, the particles adhering to the outer and inner surfaces had decreased in number. It is concluded from this study that membrane structure, as revealed in thin sections as well as in freeze-etch replicas, is consistent with Singer's ‘fluid lipid-crystal protein’ model.

1974 ◽  
Vol 16 (3) ◽  
pp. 687-701
Author(s):  
S. E. WENDELAAR BONGA ◽  
M. VEENHUIS

The membranes of kidney cells of 3-spined sticklebacks were examined in freeze-etch replicas. The numbers of particles adhering to surfaces and fracture faces of the outer cell membranes and the membranes of the basal labyrinth were determined. The latter membranes probably are the main location of ion-transporting enzyme complexes. The total number of particles per cell in freshwater fish exceeds that of seawater fish by about 50 % for the outer cell membrane, and by almost 200 % for the membranes of the basal labyrinth. After transfer of seawater fish to freshwater, particle numbers increase and their densities approximate freshwater values after 20 h. This rise in particle numbers coincides with the increase of ion-transporting activity of the cells known to take place after transfer to freshwater. The rate of increase of particle densities is enhanced after injection of ovine prolactin. This hormone is known to stimulate Na+/K+-ATPase activity of the basal labyrinth of teleost kidney cells. The results indicate that the particles represent enzyme complexes. The number of particles is probably under hormonal control. The increase in particle densities after transfer to freshwater is accompanied by a rise in the number of nuclear pores, which is noticeable by 10 h. No changes were observed in the density of the particles adhering to the fracture faces of gap junctions.


1961 ◽  
Vol 10 (4) ◽  
pp. 577-587 ◽  
Author(s):  
M. H. Silk ◽  
A. O. Hawtrey ◽  
I. M. Spence ◽  
J. H. S. Gear

A technic is described for high resolution intracellular autoradiography in the electron microscope. Cultures of LLC-MK2 monkey kidney cells were incubated for 72 hours in a medium containing 0.4 µcurie per ml of thymidine-H3. After labeling, the cells were fixed with osmium tetroxide and embedded in methacrylate. Ultrathin sections of the labeled tissue were taken up on Formvar-coated and carbon-stabilized electron microscope grids. A 150 to 450 A layer of silver metal was then evaporated onto the tissue. The coated grids were exposed to bromine vapor for 1.5 to 2 minutes under red light, allowed to dry for 1 minute, and then covered with a thin film of 1 per cent aqueous gelatin applied by means of a fine wire loop lowered over the grid supported on a glass peg. For autoradiographic exposure, the grids were stored 50 days in a light-proof container at 4°C with calcium chloride desiccant. Development was carried out for 5 minutes at 20°C in Promicrol (May and Baker, England) diluted 1:1 with water, followed by a 1 minute water wash and fixation for 2.5 minutes in 15 per cent aqueous sodium thiosulphate. After removal of the gelatin by immersion for 16 hours in water at 37°C, the autoradiograms were dried and examined in the electron microscope. Ultrastructural detail was fairly well defined and the cytoplasm of each labeled cell was covered with an electron opaque deposit of silver, suggesting that a polynucleotide containing thymidine may be synthesized in the cytoplasm. The matter is discussed.


1990 ◽  
Vol 38 (2) ◽  
pp. 159-170 ◽  
Author(s):  
M A Berryman ◽  
R D Rodewald

We have devised a method for immunogold staining of unosmicated, plastic-embedded tissue which gives high levels of specific staining without scrificing cell ultrastructure. The key to this method is a combination of several standard techniques optimized to preserve cell membranes as well as antigen. Important conditions include (a) a combination primary fixative, (b) post-fixation with uranyl acetate to preserve membrane phospholipids, (c) dehydration with acetone to minimize extraction of phospholipids, (d) low-temperature embedding in LR Gold resin, and (e) use of osmium tetroxide to stain thin sections after immunogold labeling. We have developed this method specifically to localize the membrane receptor for immunoglobulin G in the jejunal epithelium of the neonatal rat. Ultra-thin sections of embedded tissue were stained with a monoclonal primary antibody and colloidal gold-labeled secondary antibody, followed by 2% osmium tetroxide and lead citrate. The receptor was resolved in the well-preserved network of tubules, endosomes, and other membrane compartments involved in immunoglobulin transport. In several other tissues processed by this method, cell ultrastructure resembled that seen after conventional osmium post-fixation and epoxy embedding. In addition to its usefulness in these studies, this general method should be applicable to many other immunocytochemical problems.


Author(s):  
C. N. Sun ◽  
C. Araoz ◽  
H. J. White

The ultrastructure of a cerebral primitive neuroectodermal tumor has been reported previously. In the present case, we will present some unusual previously unreported membranous structures and alterations in the cytoplasm and nucleus of the tumor cells.Specimens were cut into small pieces about 1 mm3 and immediately fixed in 4% glutaraldehyde in phosphate buffer for two hours, then post-fixed in 1% buffered osmium tetroxide for one hour. After dehydration, tissues were embedded in Epon 812. Thin sections were stained with uranyl acetate and lead citrate.In the cytoplasm of the tumor cells, we found paired cisternae (Fig. 1) and annulate lamellae (Fig. 2) noting that the annulate lamellae were sometimes associated with the outer nuclear envelope (Fig. 3). These membranous structures have been reported in other tumor cells. In our case, mitochondrial to nuclear envelope fusions were often noted (Fig. 4). Although this phenomenon was reported in an oncocytoma, their frequency in the present study is quite striking.


Author(s):  
J. D. McLean ◽  
S. J. Singer

The successful application of ferritin labeled antibodies (F-A) to ultrathin sections of biological material has been hampered by two main difficulties. Firstly the normally used procedures for the preparation of material for thin sectioning often result in a loss of antigenicity. Secondly the polymers employed for embedding may non-specifically absorb the F-A. Our earlier use of cross-linked polyampholytes as embedding media partially overcame these problems. However the water-soluble monomers used for this method still extract many lipids from the material.


Author(s):  
Judith A. Murphy ◽  
Mary R. Thompson ◽  
A.J. Pappelis

In an attempt to identify polysaccharide components in thin sections of D. maydis, procedures were employed such that a PAS localization could be carried out. Three different fixatives were evaluated ie. glutaraldehyde, formaldehyde and paraformaldehyde. These were used in conjunction with periodic acid (PA), thiosemicarbazide(TSC), and osmium tetroxide(Os) to localize polysaccharides in V. maydis using a pre-embedded reaction procedure. Polysaccharide localization is based on the oxidation of vic-glycol groups by PA, and the binding of TSC as a selective reaction center for the formation of osmium black. The reaction product is sufficiently electron opaque, insoluble in lipids, not altered when tissue is embedded, and has a fine amorphous character.


Author(s):  
C. N. Sun

Myoepithelial cells have been observed in the prostate, harderian, apocrine, exocrine sweat and mammary glands. Such cells and their numerous branching processes form basket-like structures around the glandular acini. Their shapes are quite different from structures seen either in spindleshaped smooth muscle cells or skeletal muscle cells. These myoepithelial cells lie on the epithelial side of the basement membrane in the glands. This presentation describes the ultrastructure of such myoepithelial cells which have been found also in the parotid gland carcinoma from a 45-year old patient.Specimens were cut into small pieces about 1 mm3 and immediately fixed in 4 percent glutaraldehyde in phosphate buffer for two hours, then post-fixed in 1 percent buffered osmium tetroxide for 1 hour. After dehydration, tissues were embedded in Epon 812. Thin sections were stained with uranyl acetate and lead citrate. Ultrastructurally, the pattern of each individual cell showed wide variations.


Author(s):  
T. Guha ◽  
A. Q. Siddiqui ◽  
P. F. Prentis

Tilapia, Oreochromis niloticus, is an economically important fish in Saudi Arabia. Elucidation of reproductive biology of this species is necessary for successful breeding program. In this paper we describe fine structure of testicular sperm cells in O, niloticus.Testes from young adult fish were fixed in gluteraldehyde (2%) and osmium tetroxide (1%), both in cacodyl ate buffer. Specimens were processed in the conventional way for electron microscopy and thin sections of tissues (obtained by cutting the blocks with a diamond knife) were stained by ura- nyl acetate and lead citrate. These were examined in a Carl Zeiss electron microscope operated at 40 kV to 60 kV. Sperm cells were obtained from testes by squeezing them in cacodyl ate buffer. They were fixed in gluteraldehyde (2%) in the same buffer, air dried, gold coated and then examined in a Philips scanning electron microscope (SEM) operated at 25kV.The spermatozoon of O. niloticus is consisting of head, midpiece and tail (Fig. 1).


Author(s):  
Julio Sepúlveda-Saavedra ◽  
Beatriz González-Corona ◽  
Víctor A. Tamez Rodríguez ◽  
Ma. Victoria Bermúdez de Rocha ◽  
Alfredo Piñeyro López

It has been shown in previous studies that the toxin T-514 isolated from K. humboldtiana induces severe damage to the lung in treated rodents. Histopathological findings include edema, and alveolar hemorrage. However, the ultraestructure of the lesion has not been investigated. In this study we used two species of rodents: Hamster and guinea pig, and a primate: Macaca fascicularis. Animals received different single dosis of the toxin via intraperitoneal. Control animals received only the vehicle (propylen glycol). Inmediately after spontaneous death, lung samples were fixed in Karnovsky-Ito fixative, post fixed in osmium tetroxide and embedded in epon. Thin sections were prepared with an Ultratome V LKB, stained with uranly acetate and lead citrate, and studied in an electron microscope Zeiss-EM109.


Author(s):  
J.M. Minda ◽  
E. Dessy ◽  
G. G. Pietra

Pulmonary lymphangiomyomatosis (PLAM) is a rare disease occurring exclusively in women of reproductive age. It involves the lungs, lymph nodes and lymphatic ducts. In the lungs, it is characterized by the proliferation of smooth muscle cells around lymphatics in the bronchovascular bundles, lobular septa and pleura The nature of smooth muscle proliferation in PLAM is still unclear. Recently, reactivity of the smooth muscle cells for HMB-45, a melanoma-related antigen has been reported by immunohistochemistry. The purpose of this study was the ultrastructural localization of HMB-45 immunoreactivity in these cells using gold-labeled antibodies.Lung tissue from three cases of PLAM, referred to our Institution for lung transplantation, was embedded in either Poly/Bed 812 post-fixed in 1% osmium tetroxide, or in LR White, without osmication. For the immunogold technique, thin sections were placed on Nickel grids and incubated with affinity purified, monoclonal anti-melanoma antibody HMB-45 (1:1) (Enzo Diag. Co) overnight at 4°C. After extensive washing with PBS, grids were treated with Goat-anti-mouse-IgG-Gold (5nm) (1:10) (Amersham Life Sci) for 1 hour, at room temperature.


Sign in / Sign up

Export Citation Format

Share Document