scholarly journals Localization of cofilin mRNA to the leading edge of migrating cells promotes directed cell migration

2015 ◽  
Vol 128 (10) ◽  
pp. 1922-1933 ◽  
Author(s):  
Y. Maizels ◽  
F. Oberman ◽  
R. Miloslavski ◽  
N. Ginzach ◽  
M. Berman ◽  
...  
2020 ◽  
Vol 31 (20) ◽  
pp. 2234-2248
Author(s):  
Maha Abedrabbo ◽  
Shoshana Ravid

Here we show that Scribble (Scrib), Lethal giant larvae 1 (Lgl1), and myosin II form a complex in vivo and colocalize at the cell leading edge of migrating cells, and this colocalization is interdependent. Scrib and Lgl1 are required for proper cell adhesion, polarity, and migration.


2008 ◽  
Vol 19 (11) ◽  
pp. 4930-4941 ◽  
Author(s):  
Chinten J. Lim ◽  
Kristin H. Kain ◽  
Eugene Tkachenko ◽  
Lawrence E. Goldfinger ◽  
Edgar Gutierrez ◽  
...  

cAMP-dependent protein kinase A (PKA) is important in processes requiring localized cell protrusion, such as cell migration and axonal path finding. Here, we used a membrane-targeted PKA biosensor to reveal activation of PKA at the leading edge of migrating cells. Previous studies show that PKA activity promotes protrusion and efficient cell migration. In live migrating cells, membrane-associated PKA activity was highest at the leading edge and required ligation of integrins such as α4β1 or α5β1 and an intact actin cytoskeleton. α4 integrins are type I PKA-specific A-kinase anchoring proteins, and we now find that type I PKA is important for localization of α4β1 integrin-mediated PKA activation at the leading edge. Accumulation of 3′ phosphorylated phosphoinositides [PtdIns(3,4,5)P3] products of phosphatidylinositol 3-kinase (PI3-kinase) is an early event in establishing the directionality of migration; however, polarized PKA activation did not require PI3-kinase activity. Conversely, inhibition of PKA blocked accumulation of a PtdIns(3,4,5)P3-binding protein, the AKT-pleckstrin homology (PH) domain, at the leading edge; hence, PKA is involved in maintaining cell polarity during migration. In sum, we have visualized compartment-specific PKA activation in migrating cells and used it to reveal that adhesion-mediated localized activation of PKA is an early step in directional cell migration.


2012 ◽  
Vol 199 (2) ◽  
pp. 331-345 ◽  
Author(s):  
Shujie Wang ◽  
Takashi Watanabe ◽  
Kenji Matsuzawa ◽  
Akira Katsumi ◽  
Mai Kakeno ◽  
...  

Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration.


2016 ◽  
Vol 113 (21) ◽  
pp. 5952-5957 ◽  
Author(s):  
Jin Man Kim ◽  
Minji Lee ◽  
Nury Kim ◽  
Won Do Heo

Cell migration is controlled by various Ca2+signals. Local Ca2+signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca2+signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca2+signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca2+sparklets mediated by L-type voltage-dependent Ca2+channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca2+influx acts as an essential transducer in establishing a global front-to-rear increasing Ca2+gradient. This asymmetrical Ca2+gradient is crucial for maintaining front–rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca2+sparklets and front–rear coordination during directed cell migration.


2020 ◽  
Vol 117 (25) ◽  
pp. 14270-14279
Author(s):  
Zhiwen Zhu ◽  
Yongping Chai ◽  
Huifang Hu ◽  
Wei Li ◽  
Wen-Jun Li ◽  
...  

Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration inCaenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1–dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.


2008 ◽  
Vol 183 (3) ◽  
pp. 401-408 ◽  
Author(s):  
Kossay Zaoui ◽  
Stéphane Honoré ◽  
Daniel Isnardon ◽  
Diane Braguer ◽  
Ali Badache

Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as α-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo–RhoA–mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.


2003 ◽  
Vol 162 (4) ◽  
pp. 731-741 ◽  
Author(s):  
Lawrence E. Goldfinger ◽  
Jaewon Han ◽  
William B. Kiosses ◽  
Alan K. Howe ◽  
Mark H. Ginsberg

Întegrins coordinate spatial signaling events essential for cell polarity and directed migration. Such signals from α4 integrins regulate cell migration in development and in leukocyte trafficking. Here, we report that efficient α4-mediated migration requires spatial control of α4 phosphorylation by protein kinase A, and hence localized inhibition of binding of the signaling adaptor, paxillin, to the integrin. In migrating cells, phosphorylated α4 accumulated along the leading edge. Blocking α4 phosphorylation by mutagenesis or by inhibition of protein kinase A drastically reduced α4-dependent migration and lamellipodial stability. α4 phosphorylation blocks paxillin binding in vitro; we now find that paxillin and phospho-α4 were in distinct clusters at the leading edge of migrating cells, whereas unphosphorylated α4 and paxillin colocalized along the lateral edges of those cells. Furthermore, enforced paxillin association with α4 inhibits migration and reduced lamellipodial stability. These results show that topographically specific integrin phosphorylation can control cell migration and polarization by spatial segregation of adaptor protein binding.


2010 ◽  
Vol 191 (7) ◽  
pp. 1261-1269 ◽  
Author(s):  
Naël Osmani ◽  
Florent Peglion ◽  
Philippe Chavrier ◽  
Sandrine Etienne-Manneville

Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6–aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.


Author(s):  
Sungsoo Na

Cell migration is achieved by the dynamic feedback interactions between traction forces generated by the cell and exerted onto the underlying extracellular matrix (ECM), and intracellular mechano-chemical signaling pathways, e.g., Rho GTPase (RhoA, Rac1, and Cdc42) activities [1,2,3]. These components are differentially distributed within a cell, and thus the coordination between tractions and mechanotransduction (i.e, RhoA and Rac1 activities) must be implemented at a precise spatial and temporal order to achieve optimized, directed cell migration [4,5]. Recent studies have shown that focal adhesions at the leading edge exert strong tractions [6], and these traction sites are co-localized with focal adhesion sites [7]. Further, by using the fluorescence resonance energy transfer (FRET) technology coupled with genetically encoded biosensors, researchers reported that Rho GTPases, such as RhoA [8], Rac1 [9], and Cdc42 [10] are maximally activated at the leading edge, suggesting the leading edge of the cell as its common functional site for Rho GTPase activities. All these works, however, were done separately, and the relationship between tractions and mechanotransduction during cell migration has not been demonstrated directly because of the difficulty in simultaneously recording tractions and mechanotransduction in migrating cells, precluding direct comparison between these results. Furthermore, these studies have been conducted by monitoring cells on glass coverslips, the stiffness of which is ∼ 65 giga pascal (GPa), at least three to six order higher than the physiological range of ECM stiffness. Although it is increasingly accepted that ECM stiffness influences cell migration, it is not known exactly how physiologically relevant ECM stiffness (order of kPa range) affects the dynamics of RhoA and Rac1 activities. For a complete understanding of the mechanism of mechano-chemical signaling in the context of cell migration, the dynamics and interplay between biomechanical (e.g., tractions) and biochemical (e.g., Rho GTPase) activities should be visualized within the physiologically relevant range of ECM stiffness.


Sign in / Sign up

Export Citation Format

Share Document