scholarly journals Scribble, Lgl1, and myosin II form a complex in vivo to promote directed cell migration

2020 ◽  
Vol 31 (20) ◽  
pp. 2234-2248
Author(s):  
Maha Abedrabbo ◽  
Shoshana Ravid

Here we show that Scribble (Scrib), Lethal giant larvae 1 (Lgl1), and myosin II form a complex in vivo and colocalize at the cell leading edge of migrating cells, and this colocalization is interdependent. Scrib and Lgl1 are required for proper cell adhesion, polarity, and migration.

2012 ◽  
Vol 199 (2) ◽  
pp. 331-345 ◽  
Author(s):  
Shujie Wang ◽  
Takashi Watanabe ◽  
Kenji Matsuzawa ◽  
Akira Katsumi ◽  
Mai Kakeno ◽  
...  

Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Damien Garbett ◽  
Anjali Bisaria ◽  
Changsong Yang ◽  
Dannielle G. McCarthy ◽  
Arnold Hayer ◽  
...  

Abstract Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


2015 ◽  
Vol 128 (10) ◽  
pp. 1922-1933 ◽  
Author(s):  
Y. Maizels ◽  
F. Oberman ◽  
R. Miloslavski ◽  
N. Ginzach ◽  
M. Berman ◽  
...  

2013 ◽  
Vol 24 (12) ◽  
pp. 1882-1894 ◽  
Author(s):  
Matthew C. Jones ◽  
Kazuya Machida ◽  
Bruce J. Mayer ◽  
Christopher E. Turner

The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration.


Author(s):  
Brendon M. Baker ◽  
Colin K. Choi ◽  
Britta Trappmann ◽  
Christopher S. Chen

The biology of cell adhesion and migration has traditionally been studied on 2D glass or plastic surfaces. While such studies have shed light on the molecular mechanisms governing these processes [1], current knowledge is limited by the dissimilarity between the flat surfaces conventionally employed and the topographically complex extracellular matrix (ECM) cells routinely navigate within the body. On ECM-coated flat surfaces, cells are presented with an unlimited expanse of adhesive ligand and can spread and migrate freely. Conversely, the availability of ligand in vivo is generally restricted to ECM structures, forcing cells to form adhesions in prescribed locations distributed through 3D space depending on the geometry and organization of the surrounding matrix [2]. These physical constraints on cell adhesion likely have profound consequences on intracellular signaling and resulting migration, and calls into question whether the mechanisms and modes of cell motility observed on flat substrates are truly reflective of the in vivo scenario [3]. The topographies of ECMs found in vivo are varied but largely fibrillar, ranging from the tightly crosslinked fibers that form the sheet-like basement membrane, to the structure of fibrin-rich clots and collagenous connective tissues. Collagen comprises approximately 25% of the human body by mass, and as such, purified collagen has served as a popular setting for the study of cell migration within a fibrillar context for many decades [4]. However, a major limitation to the use of these gels is the inability to orthogonally dictate key structural features that impact cell behavior. For example, in contrast to the large range of fiber diameters found in vivo within connective tissue resulting from hierarchical collagen assembly and multiple types of collagens [3], collagen gels are limited to fibril diameters of ∼500nm. Furthermore, recreating the structural anisotropy common to connective tissues in collagen gels is technically challenging [5]. Thus, there remains a significant need for engineered fibrillar materials that afford precise and independent control of architectural and mechanical features for application in cell biology. In this work, we develop two approaches to fabricating fibrillar ECMs in order to study cell adhesion and migration in vitro.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Fei Xue ◽  
Deanna M. Janzen ◽  
David A. Knecht

Numerous F-actin containing structures are involved in regulating protrusion of membrane at the leading edge of motile cells. We have investigated the structure and dynamics of filopodia as they relate to events at the leading edge and the function of the trailing actin networks. We have found that although filopodia contain parallel bundles of actin, they contain a surprisingly nonuniform spatial and temporal distribution of actin binding proteins. Along the length of the actin filaments in a single filopodium, the most distal portion contains primarily T-plastin, while the proximal portion is primarily bound byα-actinin and coronin. Some filopodia are stationary, but lateral filopodia move with respect to the leading edge. They appear to form a mechanical link between the actin polymerization network at the front of the cell and the myosin motor activity in the cell body. The direction of lateral filopodial movement is associated with the direction of cell migration. When lateral filopodia initiate from and move toward only one side of a cell, the cell will turn opposite to the direction of filopodial flow. Therefore, this filopodia-myosin II system allows actin polymerization driven protrusion forces and myosin II mediated contractile force to be mechanically coordinated.


2008 ◽  
Vol 294 (6) ◽  
pp. C1465-C1475 ◽  
Author(s):  
Melissa Z. Mercure ◽  
Roman Ginnan ◽  
Harold A. Singer

Previous studies indicate involvement of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in vascular smooth muscle (VSM) cell migration. In the present study, molecular loss-of-function studies were used specifically to assess the role of the predominant CaMKIIδ2 isoform on VSM cell migration using a scratch wound healing assay. Targeted CaMKIIδ2 knockdown using siRNA or inhibition of activity by overexpressing a kinase-negative mutant resulted in attenuation of VSM cell migration. Temporal and spatial assessments of kinase autophosphorylation indicated rapid and transient activation in response to wounding, in addition to a sustained activation in the leading edge of migrating and spreading cells. Furthermore, siRNA-mediated suppression of CaMKIIδ2 resulted in the inhibition of wound-induced Rac activation and Golgi reorganization, and disruption of leading edge morphology, indicating an important function for CaMKIIδ2 in regulating VSM cell polarization. Numerous previous reports link activation of CaMKII to ERK1/2 signaling in VSM. Wound-induced ERK1/2 activation was also found to be dependent on CaMKII; however, ERK activity did not account for effects of CaMKII in regulating Golgi polarization, indicating alternative mechanisms by which CaMKII affects the complex events involved in cell migration. Wounding a VSM cell monolayer results in CaMKIIδ2 activation, which positively regulates VSM cell polarization and downstream signaling, including Rac and ERK1/2 activation, leading to cell migration.


2006 ◽  
Vol 176 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erik Sahai ◽  
Raquel Garcia-Medina ◽  
Jacques Pouysségur ◽  
Emmanuel Vial

Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal–amoeboid–like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.


2018 ◽  
Author(s):  
Inge M. N. Wortel ◽  
Ioana Niculescu ◽  
P. Martijn Kolijn ◽  
Nir Gov ◽  
Rob J. de Boer ◽  
...  

ABSTRACTCell migration is astoundingly diverse. Molecular signatures, cell-cell and cell-matrix interactions, and environmental structures each play their part in shaping cell motion, yielding numerous different cell morphologies and migration modes. Nevertheless, in recent years, a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less frequently. Given this universal coupling between speed and persistence (UCSP), from a modelling perspective it is important to know whether computational models of cell migration capture this speed-persistence link. Here, we present an in-depth characterisation of an existing Cellular Potts Model (CPM). We first show that this model robustly reproduces the UCSP without having been designed for this task. Instead, we show that this fundamental law of migration emerges spontaneously through a crosstalk of intracellular mechanisms, cell shape, and environmental constraints, resembling the dynamic nature of cell migration in vivo. Our model also reveals how cell shape dynamics can further constrain cell motility by limiting both the speed and persistence a cell can reach, and how a rigid environment such as the skin can restrict cell motility even further. Our results further validate the CPM as a model of cell migration, and shed new light on the speed-persistence coupling that has emerged as a fundamental property of migrating cells.SIGNIFICANCEThe universal coupling between speed and persistence (UCSP) is the first general quantitative law describing motility patterns across the versatile spectrum of migrating cells. Here, we show – for the first time – that this migration law emerges spontaneously in an existing, highly popular computational model of cell migration. Studying the UCSP in entirely different model frameworks, not explicitly built with this law in mind, can help uncover how intracellular dynamics, cell shape, and environment interact to produce the diverse motility patterns observed in migrating cells.


Sign in / Sign up

Export Citation Format

Share Document