scholarly journals Optogenetic toolkit reveals the role of Ca2+sparklets in coordinated cell migration

2016 ◽  
Vol 113 (21) ◽  
pp. 5952-5957 ◽  
Author(s):  
Jin Man Kim ◽  
Minji Lee ◽  
Nury Kim ◽  
Won Do Heo

Cell migration is controlled by various Ca2+signals. Local Ca2+signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca2+signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca2+signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca2+sparklets mediated by L-type voltage-dependent Ca2+channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca2+influx acts as an essential transducer in establishing a global front-to-rear increasing Ca2+gradient. This asymmetrical Ca2+gradient is crucial for maintaining front–rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca2+sparklets and front–rear coordination during directed cell migration.

2020 ◽  
Vol 31 (20) ◽  
pp. 2234-2248
Author(s):  
Maha Abedrabbo ◽  
Shoshana Ravid

Here we show that Scribble (Scrib), Lethal giant larvae 1 (Lgl1), and myosin II form a complex in vivo and colocalize at the cell leading edge of migrating cells, and this colocalization is interdependent. Scrib and Lgl1 are required for proper cell adhesion, polarity, and migration.


2000 ◽  
Vol 11 (9) ◽  
pp. 2999-3012 ◽  
Author(s):  
Christoph Ballestrem ◽  
Bernhard Wehrle-Haller ◽  
Boris Hinz ◽  
Beat A. Imhof

Migrating cells are polarized with a protrusive lamella at the cell front followed by the main cell body and a retractable tail at the rear of the cell. The lamella terminates in ruffling lamellipodia that face the direction of migration. Although the role of actin in the formation of lamellipodia is well established, it remains unclear to what degree microtubules contribute to this process. Herein, we have studied the contribution of microtubules to cell motility by time-lapse video microscopy on green flourescence protein-actin- and tubulin-green fluorescence protein–transfected melanoma cells. Treatment of cells with either the microtubule-disrupting agent nocodazole or with the stabilizing agent taxol showed decreased ruffling and lamellipodium formation. However, this was not due to an intrinsic inability to form ruffles and lamellipodia because both were restored by stimulation of cells with phorbol 12-myristate 13-acetate in a Rac-dependent manner, and by stem cell factor in melanoblasts expressing the receptor tyrosine kinase c-kit. Although ruffling and lamellipodia were formed without microtubules, the microtubular network was needed for advancement of the cell body and the subsequent retraction of the tail. In conclusion, we demonstrate that the formation of lamellipodia can occur via actin polymerization independently of microtubules, but that microtubules are required for cell migration, tail retraction, and modulation of cell adhesion.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009856
Author(s):  
Amalia Riga ◽  
Janine Cravo ◽  
Ruben Schmidt ◽  
Helena R. Pires ◽  
Victoria G. Castiglioni ◽  
...  

The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large.


2021 ◽  
Author(s):  
Dániel Becsky

Background and purpose: Cell migration is one of the cornerstones of regeneration processes, as it is necessary for wound healing, and also required for embryonic development, immune system activation, or tumor metastasis formation. Skeletal muscle has a special, advanced dynamism that allows it to adapt to various impacts and recover successfully after an injury, exercise, or muscle disease. Satellite stem cells are activated by local damage during muscle regeneration, and after asymmetric division, myoblasts (i.e., activated satellite cells) migrate to the site of injury, differentiate, and fuse to form muscle fibers. Migration of the cells requires cellular polarization, the creation of leading and trailing edges, as well as the proper orientation and positioning of organelles inside the cell. Efficient migration also requires the presence of an asymmetrical front-to-rear calcium (Ca2+) gradient to regulate focal adhesion assembly and actomyosin contractility. The transmembrane proteoglycan syndecan-4 (SDC4), which is one of the cell surface markers of resting and activated satellite stem cells, is involved in the formation of focal adhesions. Furthermore, SDC4 plays a variety of roles in signal transduction processes, including controlling the function of the small GTPase Rac1 by binding to and inhibiting the activity of T-lymphoma invasion and metastasis-1 (Tiam1), a guanine nucleotide exchange factor for Rac1 (Ras-related C3 botulinum toxin substrate 1) GTPase. Cell migration also requires Rac1-mediated actin remodeling. SDC4 knockout mice are unable to regenerate damaged muscle; however, its underlying precise mechanism is unclear; therefore, our aim was to analyze the role of SDC4 in myoblast migration. Experimental approaches: To achieve SDC4 knockdown, C2C12 murine myoblast cells were transfected stably with plasmids expressing short hairpin RNAs (shRNAs) specific for mouse SDC4 (shSDC4#1 and shSDC4#2) or a scrambled target sequence. To study cell migration, time-lapse images were captured at 37 °C and 5% CO2 using a high-content imaging system for single-cell tracking or wound scratch assay was performed. To evaluate the movement of the single cells, the cell nuclei were tracked with ImageJ and CellTracker software. Super-resolution direct stochastic optical reconstruction microscopy (dSTORM) measurements were performed for the nanoscale analysis of the lamellipodial actin network of the migrating cells. To study the intracellular Ca2+ level, Fluo-4 and Fura Red indicators were applied. Immunofluorescence cytochemistry was performed to analyze the distribution of SDC4, Tiam1, centrosomes, FAK (focal adhesion kinase) or GM130 (anti- Golgi matrix protein of 130 kDa) followed by wide-field fluorescence or confocal microscopy. Image analysis was performed with ImageJ. Rac1 was inhibited by NSC23766 treatment during the measurements (50 µM). Key results: Silencing of SDC4 disrupts the correct polarization of migrating mammalian myoblasts. SDC4 knockdown completely abolished the intracellular Ca2+ gradient, abrogated centrosome reorientation, and thus decreased cell motility, demonstrating the role of SDC4 in cell polarity. Additionally, SDC4 exhibited a polarized distribution during migration. SDC4 knockdown cells exhibited decreases in the total movement distance during migration, maximum and vectorial distances from the starting point, as well as average and maximum cell speeds. Analysis of the dSTORM images of SDC4 knockdown cells revealed nanoscale changes in the actin cytoskeletal architecture, such as decreases in the numbers of branches and individual branch lengths in the lamellipodia of the migrating cells. The Rac1 inhibitor NSC23766 did not restore the migration capacity of SDC4 silenced cells; in fact, it reduced it further. SDC4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Conclusion: According to our results, SDC4 affects the migration of C2C12 myoblasts and modulates cell polarity by influencing centrosome positioning, intracellular Ca2+ and Tiam1 distribution. These findings may promote greater understanding the essential role of SDC4 in the embryonic development and postnatal regeneration of skeletal muscle. Given the ubiquitous expression and crucial role of SDC4 in cell migration, we conclude that our findings can facilitate understanding the general role of SDC4 during cell migration.


2005 ◽  
Vol 33 (6) ◽  
pp. 1507-1508 ◽  
Author(s):  
N.R. Leslie ◽  
X. Yang ◽  
C.P. Downes ◽  
C.J. Weijer

In vertebrates, the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) regulates many cellular processes through its PtdIns(3,4,5)P3 lipid phosphatase activity, antagonizing PI3K (phosphoinositide 3-kinase) signalling. Given the important role of PI3Ks in the regulation of directed cell migration and the role of PTEN as an inhibitor of migration, it is somewhat surprising that data now indicate that PTEN is able to regulate cell migration independent of its lipid phosphatase activity. Here, we discuss the role of PTEN in the regulation of cell migration.


2015 ◽  
Vol 128 (10) ◽  
pp. 1922-1933 ◽  
Author(s):  
Y. Maizels ◽  
F. Oberman ◽  
R. Miloslavski ◽  
N. Ginzach ◽  
M. Berman ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1246
Author(s):  
Ayat S. Hammad ◽  
Khaled Machaca

Ca2+ signaling is ubiquitous in eukaryotic cells and modulates many cellular events including cell migration. Directional cell migration requires the polarization of both signaling and structural elements. This polarization is reflected in various Ca2+ signaling pathways that impinge on cell movement. In particular, store-operated Ca2+ entry (SOCE) plays important roles in regulating cell movement at both the front and rear of migrating cells. SOCE represents a predominant Ca2+ influx pathway in non-excitable cells, which are the primary migrating cells in multicellular organisms. In this review, we summarize the role of Ca2+ signaling in cell migration with a focus on SOCE and its diverse functions in migrating cells and cancer metastasis. SOCE has been implicated in regulating focal adhesion turnover in a polarized fashion and the mechanisms involved are beginning to be elucidated. However, SOCE is also involved is other aspects of cell migration with a less well-defined mechanistic understanding. Therefore, much remains to be learned regarding the role and regulation of SOCE in migrating cells.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


Sign in / Sign up

Export Citation Format

Share Document