scholarly journals On the asymmetric partitioning of nucleocytoplasmic transport – recent insights and open questions

2021 ◽  
Vol 134 (7) ◽  
Author(s):  
Joanna Kalita ◽  
Larisa E. Kapinos ◽  
Roderick Y. H. Lim

ABSTRACT Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the β-karyopherin (Kapβ) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP–RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapβs, cargoes and Ran to establish the asymmetry of NCT.

2001 ◽  
Vol 65 (4) ◽  
pp. 570-594 ◽  
Author(s):  
Ian G. Macara

SUMMARY A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.


2015 ◽  
Vol 208 (6) ◽  
pp. 729-744 ◽  
Author(s):  
Christopher L. Lord ◽  
Benjamin L. Timney ◽  
Michael P. Rout ◽  
Susan R. Wente

The eukaryotic nuclear permeability barrier and selective nucleocytoplasmic transport are maintained by nuclear pore complexes (NPCs), large structures composed of ∼30 proteins (nucleoporins [Nups]). NPC structure and function are disrupted in aged nondividing metazoan cells, although it is unclear whether these changes are a cause or consequence of aging. Using the replicative life span (RLS) of Saccharomyces cerevisiae as a model, we find that specific Nups and transport events regulate longevity independent of changes in NPC permeability. Mutants lacking the GLFG domain of Nup116 displayed decreased RLSs, whereas longevity was increased in nup100-null mutants. We show that Nup116 mediates nuclear import of the karyopherin Kap121, and each protein is required for mitochondrial function. Both Kap121-dependent transport and Nup116 levels decrease in replicatively aged yeast. Overexpression of GSP1, the small GTPase that powers karyopherin-mediated transport, rescued mitochondrial and RLS defects in nup116 mutants and increased longevity in wild-type cells. Together, these studies reveal that specific NPC nuclear transport events directly influence aging.


2020 ◽  
Author(s):  
Tae Yeon Yoo ◽  
Timothy J Mitchison

AbstractMacromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG repeats in NPC are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated nucleocytoplasmic transport of proteins in both directions, and decreasing modification slowed transport. Super-resolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the non-specific permeability the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.SummaryNuclear pore complexes mediate nuclear transport and are highly modified with O-linked N-acetylglucosamine (O-GlcNAc) on FG repeat domains. Using a new quantitative live-cell imaging assay, Yoo and Mitchison demonstrate acceleration of nuclear import and export by O-GlcNAc modification.


2015 ◽  
Vol 71 (12) ◽  
pp. 1481-1487 ◽  
Author(s):  
Thomas Monecke ◽  
Achim Dickmanns ◽  
Manfred S. Weiss ◽  
Sarah A. Port ◽  
Ralph H. Kehlenbach ◽  
...  

High conformational flexibility is an intrinsic and indispensable property of nuclear transport receptors, which makes crystallization and structure determination of macromolecular complexes containing exportins or importins particularly challenging. Here, the crystallization and structure determination of a quaternary nuclear export complex consisting of the exportin CRM1, the small GTPase Ran in its GTP-bound form, the export cargo SPN1 and an FG repeat-containing fragment of the nuclear pore complex component nucleoporin Nup214 fused to maltose-binding protein is reported. Optimization of constructs, seeding and the development of a sophisticated protocol including successive PEG-mediated crystal dehydration as well as additional post-mounting steps were essential to obtain well diffracting crystals.


2011 ◽  
Vol 22 (23) ◽  
pp. 4539-4548 ◽  
Author(s):  
Shuling Fan ◽  
Eileen L. Whiteman ◽  
Toby W. Hurd ◽  
Jeremy C. McIntyre ◽  
John F. Dishinger ◽  
...  

The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis. The Ran-binding protein 1 (RanBP1), which indirectly accelerates Ran GTP → Ran GDP hydrolysis and promotes the dissociation of the Ran/importin complex, also localizes to basal bodies and cilia. To confirm the crucial link between Ran GTP and ciliogenesis, we manipulated the levels of RanBP1 and determined the effects on Ran GTP and primary cilia formation. We discovered that RanBP1 knockdown results in an increased concentration of Ran GTP at basal bodies, leading to ciliogenesis. In contrast, overexpression of RanBP1 antagonizes primary cilia formation. Furthermore, we demonstrate that RanBP1 knockdown disrupts the proper localization of KIF17, a kinesin-2 motor, at the distal tips of primary cilia in Madin–Darby canine kidney cells. Our studies illuminate a new function for Ran GTP in stimulating cilia formation and reinforce the notion that Ran GTP and the importins play key roles in ciliogenesis and ciliary protein transport.


2002 ◽  
Vol 159 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Susan K. Lyman ◽  
Tinglu Guan ◽  
Janna Bednenko ◽  
Harald Wodrich ◽  
Larry Gerace

Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin α/β and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin β and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.


2021 ◽  
Author(s):  
Amanda Gleixner ◽  
Brandie Morris Verdone ◽  
Charlton Otte ◽  
Nandini Ramesh ◽  
Jenna Gale ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) share clinical, neuropathological, and genetic features. This includes common genetic disease-causing mutations such as the expanded G4C2 repeat in the C9orf72 gene (C9-ALS/FTLD) and cytoplasmic and insoluble protein depositions of the TDP-43 in degenerating regions of the brain and spinal cord. Proposed mechanisms of toxicity in C9-ALS/FTLD are the production of repeat expansion transcripts and their dipeptide repeat proteins (DPRs) products which are hypothesized to drive nucleocytoplasmic transport defects. The nuclear pore complex (NPC) regulates nucleocytoplasmic trafficking by creating a selectivity and permeability barrier comprised of phenylalanine glycine nucleoporins (FG nups). However, the relationship between FG nups and TDP-43 pathology remains elusive. Here, we define two mechanisms through which TDP-43 promotes Nup62 nuclear depletion and cytoplasmic in C9-ALS/FTLD and sALS/FTLD. In C9-ALS/FTLD, poly-GR initiates the formation of TDP-43 containing stress granules (SGs) that trigger the nuclear loss and recruitment of Nup62 in vitro and in vivo. When colocalized, cytoplasmic TDP-43:Nup62 assemblies mature into insoluble inclusions through an interaction within the TDP-43 nuclear localization sequence (NLS) suggesting Nup62 promotes deleterious phase transitions. Absent of poly-GR, aberrant TDP-43 phase transitions in the cytoplasm recruits and mislocalizes Nup62 into pathological inclusions. The result of these cytoplasmic Nup62 and TDP-43 interactions are pathological and insoluble TDP-43:Nup62 assemblies that are observed in C9-ALS/FTLD and sALS/FTLD CNS tissue.


1997 ◽  
Vol 61 (2) ◽  
pp. 193-211
Author(s):  
A H Corbett ◽  
P A Silver

Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Tae Yeon Yoo ◽  
Timothy J. Mitchison

Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated transport of proteins in both directions, and decreasing modification slowed transport. Superresolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the nonspecific permeability of the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.


2012 ◽  
Vol 3 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Masahiro Nagai ◽  
Yoshihiro Yoneda

AbstractLike many other small GTPases, Ran functions in eukaryotic cells as a molecular switch that cycles between GTP- and GDP-bound forms. Through the proper modulation of the GTP/GDP cycle, Ran functions with a number of Ran-binding proteins to control a broad array of fundamental cellular functions, including nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope and nuclear pore complex formation. Recent studies have revealed that ‘Ran and Ran binding proteins’ are involved in a variety of functions involving cell fate determination, including cell death, cell proliferation, cell differentiation, and malignant transformation. In this review, we discuss recent progress on the functional link between the Ran system and tumorigenesis, which give clues to the molecular understanding of cancer biology.


Sign in / Sign up

Export Citation Format

Share Document