Differential effect of arginine modification with 1,2-cyclohexanedione on the capacity of vimentin and desmin to assemble into intermediate filaments and to bind to nucleic acids

1984 ◽  
Vol 65 (1) ◽  
pp. 1-20
Author(s):  
P. Traub ◽  
C.E. Vorgias

When the intermediate filament proteins vimentin and desmin were reacted for a short period of time with the arginine-specific reagent 1,2-cyclohexanedione, the modification had a severe, inhibitory effect on the assembly of intermediate filaments and on the susceptibility of the basic, amino-terminal polypeptide of both proteins to degradation by the intermediate filament-specific, Ca2+-activated proteinase. However, it had only a slightly inhibitory effect on the binding of vimentin and desmin to ribosomal RNA from Ehrlich ascites tumour cells. Since the Ca2+-activated proteinase is very likely to be a trypsin-like enzyme, with a preference for arginyl and lysyl peptide bonds, the results indicate that the arginine residues of the amino-terminal polypeptide of vimentin and desmin are highly essential for filament assembly but largely dispensable for the binding of both proteins to nucleic acids. This was supported by the observation that two breakdown products of vimentin lacking a 5 X 10(3) Mr and an 8 X 10(3) Mr polypeptide from the amino terminus, respectively, did not assemble into intermediate filaments but were still capable of binding to rRNA. Both polypeptides also bound to single-stranded DNA-cellulose under non-denaturing conditions, but passed the affinity column in the presence of 6 M-urea. Thus, the binding of vimentin to nucleic acids appears to be based on two components: a non-specific electrostatic interaction mediated by the positively charged arginine residues of the amino-terminal polypeptide that is insensitive to denaturation by urea, and a specific interaction that is sensitive to denaturation by urea.

2000 ◽  
Vol 113 (13) ◽  
pp. 2471-2483 ◽  
Author(s):  
I. Hofmann ◽  
C. Mertens ◽  
M. Brettel ◽  
V. Nimmrich ◽  
M. Schnolzer ◽  
...  

Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid phase-binding assays that both PKP1a and PKP2a bind to intermediate filament (IF) proteins, in particular to cytokeratins (CKs) from epidermal as well as simple epithelial cells and, to some extent, to vimentin. In line with this we show that recombinant PKP1a binds strongly to IFs assembled in vitro from CKs 8/18, 5/14, vimentin or desmin and integrates them into thick (up to 120 nm in diameter) IF bundles extending for several microm. The basic amino-terminal, non-arm-repeat domain of PKP1a is necessary and sufficient for this specific interaction as shown by blot overlay and centrifugation experiments. In particular, the binding of PKP1a to IF proteins is saturable at an approximately equimolar ratio. In extracts from HaCaT cells, distinct soluble complexes containing PKP1a and desmoplakin I (DPI) have been identified by co-immunoprecipitation and sucrose density fractionation. The significance of these interactions of PKP1a with IF proteins on the one hand and desmoplakin on the other is discussed in relation to the fact that PKP1a is not bound - and does not bind - to extended IFs in vivo. We postulate that (1) effective cellular regulatory mechanisms exist that prevent plakophilins from unscheduled IF-binding, and (2) specific desmoplakin interactions with either PKP1, PKP2 or PKP3, or combinations thereof, are involved in the selective recruitment of plakophilins to the desmosomal plaques.


1993 ◽  
Vol 122 (6) ◽  
pp. 1323-1335 ◽  
Author(s):  
GY Ching ◽  
RK Liem

We report here on the in vivo assembly of alpha-internexin, a type IV neuronal intermediate filament protein, in transfected cultured cells, comparing its assembly properties with those of the neurofilament triplet proteins (NF-L, NF-M, and NF-H). Like the neurofilament triplet proteins, alpha-internexin coassembles with vimentin into filaments. To study the assembly characteristics of these proteins in the absence of a preexisting filament network, transient transfection experiments were performed with a non-neuronal cell line lacking cytoplasmic intermediate filaments. The results showed that only alpha-internexin was able to self-assemble into extensive filamentous networks. In contrast, the neurofilament triplet proteins were incapable of homopolymeric assembly into filamentous arrays in vivo. NF-L coassembled with either NF-M or NF-H into filamentous structures in the transfected cells, but NF-M could not form filaments with NF-H. alpha-internexin could coassemble with each of the neurofilament triplet proteins in the transfected cells to form filaments. When all but 2 and 10 amino acid residues were removed from the tail domains of NF-L and NF-M, respectively, the resulting NF-L and NF-M deletion mutants retained the ability to coassemble with alpha-internexin into filamentous networks. These mutants were also capable of forming filaments with other wild-type neurofilament triplet protein subunits. These results suggest that the tail domains of NF-L and NF-M are dispensable for normal coassembly of each of these proteins with other type IV intermediate filament proteins to form filaments.


1984 ◽  
Vol 246 (4) ◽  
pp. H566-H572 ◽  
Author(s):  
M. G. Price

Myocardial cells contain a cytoskeleton of intermediate filaments connecting the myofibrils. The present molecular analysis of the myocardial cytoskeleton was designed to identify the intermediate filament proteins and examine their assembly properties. The intermediate filament proteins desmin and vimentin were isolated from adult bovine myocardium by sequential extraction, urea solubilization, and chromatography on hydroxylapatite and DEAE columns. Desmin was obtained virtually pure in one peak and in a mixture of desmin and vimentin in the trailing fractions. Intermediate filaments of different morphologies polymerized in the desmin and the desmin-vimentin fractions. Isolated myocardial desmin occurs as three isozymes and isolated myocardial vimentin as two isozymes, which co-migrate on two-dimensional gels with corresponding isozymes from bovine skeletal and smooth muscle. Polypeptides of 200,000 and 220,000 daltons that fractionate with myocardial desmin and vimentin are also present in cytoskeletons of smooth and skeletal muscle. The results provide direct evidence that myocardial desmin can assemble to form intermediate filaments, suggesting that desmin is the major component of the cytoskeletal filaments in cardiomyocytes.


1993 ◽  
Vol 105 (4) ◽  
pp. 1057-1068 ◽  
Author(s):  
S.G. Remington

Filensin, a 100 kDa, membrane-associated, cytoskeletal protein, is uniquely expressed in the lens fiber cell (Merdes, A., Brunkener, M., Horstmann, H., and Georgatos, S. D. (1991) J. Cell Biol. 115, 397–410). I cloned and sequenced a full-length chicken lens cDNA encoding filensin, also known as CP95 (Ireland, M. and Maisel, H. (1989) Lens and Eye Toxicity Research 6, 623–638). The deduced amino acid sequence of 657 residues contained an internal 280 residue heptad repeat domain with sequence similarities to the rod domain of intermediate filament proteins. The putative filensin rod domain could be divided into three alpha-helical segments (1A, 1B and 2) separated by short, non-helical linkers. The sequence of the amino-terminal end of the filensin rod domain contained the highly conserved intermediate filament segment 1A motif (Conway, J. F. and Parry, D. A. D. (1988) Int. J. Biol. Macromol. 10, 79–98). Allowing conservative amino acid substitutions, the sequence of the carboxy-terminal end of the filensin rod domain was similar to that of the highly conserved intermediate filament rod carboxy terminus. The alpha-helical segments of the shorter filensin rod domain aligned with the corresponding segments of intermediate filament proteins by allowing a gap of four heptad repeats in the amino-terminal half of filensin segment 2. Filensin rod segment 2 contained the characteristic stutter in heptad repeat phasing, nine heptads from the end of the intermediate filament rod. The overall sequence identity between the rod domains of filensin and individual intermediate filament proteins was 20 to 25%, approximately the level of sequence identity observed between intermediate filament proteins of different types. The open reading frame of chicken filensin predicted a 657 amino acid protein with molecular mass of 76 kDa. Embryonic chicken filensin migrated in SDS-PAGE as a triplet of 102, 105 and 109 kDa, while rooster filensin migrated as a 105 and 109 kDa doublet. Antibodies to filensin labeled lens fiber cells but not lens epithelial cells. By immunofluorescence methods filensin was localized to the fiber cell plasma membranes, including the ends of elongated fiber cells.


1990 ◽  
Vol 111 (6) ◽  
pp. 3049-3064 ◽  
Author(s):  
P A Coulombe ◽  
Y M Chan ◽  
K Albers ◽  
E Fuchs

To investigate the sequences important for assembly of keratins into 10-nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin filament networks in vivo, but they also formed 10-nm filaments with K5 in vitro. Surprisingly, keratin mutants missing the highly conserved L L E G E sequence, common to all intermediate filament proteins and found at the carboxy end of the alpha-helical rod domain, also assembled into filaments with only a somewhat reduced efficiency. Even a carboxy K14 mutant missing approximately 10% of the rod assembled into filaments, although in this case filaments aggregated significantly. Despite the ability of these mutants to form filaments in vitro, they often perturbed keratin filament organization in vivo. In contrast, small truncations in the amino-terminal end of the rod domain more severely disrupted the filament assembly process in vitro as well as in vivo, and in particular restricted elongation. For both carboxy and amino rod deletions, the more extensive the deletion, the more severe the phenotype. Surprisingly, while elongation could be almost quantitatively blocked with large mutations, tetramer formation and higher ordered lateral interactions still occurred. Collectively, our in vitro data (a) provide a molecular basis for the dominance of our mutants in vivo, (b) offer new insights as to why different mutants may generate different phenotypes in vivo, and (c) delineate the limit sequences necessary for K14 to both incorporate properly into a preexisting keratin filament network in vivo and assemble efficiently into 10-nm keratin filaments in vitro.


2019 ◽  
Vol 30 (3) ◽  
pp. 357-369 ◽  
Author(s):  
Mansi Gujrati ◽  
Rohit Mittal ◽  
Lakhan Ekal ◽  
Ram Kumar Mishra

The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper-­SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205038 ◽  
Author(s):  
Bertrand Favre ◽  
Nadja Begré ◽  
Jamal-Eddine Bouameur ◽  
Prakash Lingasamy ◽  
Gloria M. Conover ◽  
...  

1995 ◽  
Vol 73 (9-10) ◽  
pp. 627-634 ◽  
Author(s):  
Monique Cadrin ◽  
Maria-Grazia Martinoli

Intermediate filament proteins belong to a multigene family and constitute an important cytoskeletal component of most vertebrate cells. Their pattern of expression is tissue specific and is highly controlled during embryonic development. Numerous pathologies are known to be associated with modifications of intermediate filament organisation, although their precise role has not yet been elucidated. The present review focuses on the most recent data concerning the possible causes of intermediate filaments disorganization in specific pathologic conditions affecting the epidermis, the liver, and the nervous system. We discuss the formation of abnormal intermediate filament networks that arise as a consequence of mutations that directly affect intermediate filament structure or are induced by multifactorial causes such as modifications of post-translational processes and changes in the levels of expression.Key words: intermediate filaments, phosphorylation, Mallory bodies, Lewy bodies, degenerative diseases.


FEBS Letters ◽  
1989 ◽  
Vol 253 (1-2) ◽  
pp. 157-162 ◽  
Author(s):  
Michel Escurat ◽  
Hai Phamgia ◽  
Claude Huc ◽  
Annick Pouplard-Barthelaix ◽  
Christian Boitard ◽  
...  

1994 ◽  
Vol 107 (7) ◽  
pp. 1935-1948 ◽  
Author(s):  
J.E. Ralton ◽  
X. Lu ◽  
A.M. Hutcheson ◽  
R.A. Quinlan

The non-alpha-helical N-terminal domain of intermediate filament proteins plays a key role in filament assembly. Previous studies have identified a nonapeptide motif, SSYRRIFGG, in the non-alpha-helical N-terminal domain of vimentin that is required for assembly. This motif is also found in desmin, peripherin and the type IV intermediate filament proteins. GFAP is the only type III intermediate filament protein in which this motif is not readily identified. This study has identified two motifs in the non-alpha-helical N-terminal domain of mouse GFAP that play important roles in GFAP assembly. One motif is located at the very N terminus and has the consensus sequence, MERRRITS-ARRSY. It has some characteristics in common with the vimentin nonapeptide motif, SSYRRIFGG, including its location in the non-alpha-helical N-terminal domain and a concentration of arginine residues. Unlike the vimentin motif in which even conserved sequence changes affect filament assembly, the GFAP consensus sequence, MERRRITS-ARRSY, can be replaced by a completely unrelated sequence; namely, the heptapeptide, MVRANKR, derived from the lambda cII protein. When fused to GFAP sequences with sequential deletions of the N-terminal domain, the lambda cII heptapeptide was used to help identify a second motif, termed the RP-box, which is located just upstream of the GFAP alpha-helical rod domain. This RP-box affected the efficiency of filament assembly as well as protein-protein interactions in the filament, as shown by sedimentation assays and electron microscopy. These results are supported by previous data, which showed that the dramatic reorganization of GFAP within cells was due to phosphorylation-dephosphorylation of a site located in this RP-box. The results in this study suggest the RP-box motif to be a key modulator in the mechanism of GFAP assembly, and support a role for this motif in both the nucleation and elongation phases of filament assembly. The RP-box motif in GFAP has the consensus sequence, RLSL-RM-PP. Sequences similar to the GFAP RP-box motif are also to be found in vimentin, desmin and peripherin. Like GFAP, these include phosphorylation and proteolysis sites and are adjacent to the start of the central alpha-helical rod domain, suggesting that this motif of general importance to type III intermediate filament protein assembly.


Sign in / Sign up

Export Citation Format

Share Document