Molecular analysis of intermediate filament cytoskeleton--a putative load-bearing structure

1984 ◽  
Vol 246 (4) ◽  
pp. H566-H572 ◽  
Author(s):  
M. G. Price

Myocardial cells contain a cytoskeleton of intermediate filaments connecting the myofibrils. The present molecular analysis of the myocardial cytoskeleton was designed to identify the intermediate filament proteins and examine their assembly properties. The intermediate filament proteins desmin and vimentin were isolated from adult bovine myocardium by sequential extraction, urea solubilization, and chromatography on hydroxylapatite and DEAE columns. Desmin was obtained virtually pure in one peak and in a mixture of desmin and vimentin in the trailing fractions. Intermediate filaments of different morphologies polymerized in the desmin and the desmin-vimentin fractions. Isolated myocardial desmin occurs as three isozymes and isolated myocardial vimentin as two isozymes, which co-migrate on two-dimensional gels with corresponding isozymes from bovine skeletal and smooth muscle. Polypeptides of 200,000 and 220,000 daltons that fractionate with myocardial desmin and vimentin are also present in cytoskeletons of smooth and skeletal muscle. The results provide direct evidence that myocardial desmin can assemble to form intermediate filaments, suggesting that desmin is the major component of the cytoskeletal filaments in cardiomyocytes.

1993 ◽  
Vol 122 (6) ◽  
pp. 1323-1335 ◽  
Author(s):  
GY Ching ◽  
RK Liem

We report here on the in vivo assembly of alpha-internexin, a type IV neuronal intermediate filament protein, in transfected cultured cells, comparing its assembly properties with those of the neurofilament triplet proteins (NF-L, NF-M, and NF-H). Like the neurofilament triplet proteins, alpha-internexin coassembles with vimentin into filaments. To study the assembly characteristics of these proteins in the absence of a preexisting filament network, transient transfection experiments were performed with a non-neuronal cell line lacking cytoplasmic intermediate filaments. The results showed that only alpha-internexin was able to self-assemble into extensive filamentous networks. In contrast, the neurofilament triplet proteins were incapable of homopolymeric assembly into filamentous arrays in vivo. NF-L coassembled with either NF-M or NF-H into filamentous structures in the transfected cells, but NF-M could not form filaments with NF-H. alpha-internexin could coassemble with each of the neurofilament triplet proteins in the transfected cells to form filaments. When all but 2 and 10 amino acid residues were removed from the tail domains of NF-L and NF-M, respectively, the resulting NF-L and NF-M deletion mutants retained the ability to coassemble with alpha-internexin into filamentous networks. These mutants were also capable of forming filaments with other wild-type neurofilament triplet protein subunits. These results suggest that the tail domains of NF-L and NF-M are dispensable for normal coassembly of each of these proteins with other type IV intermediate filament proteins to form filaments.


Zygote ◽  
1997 ◽  
Vol 5 (3) ◽  
pp. 207-212 ◽  
Author(s):  
Caterina Mencarelli ◽  
Franco Cotelli

SummaryWe have used monoclonal antibodies specific for different sets of human cytokeratins and the anti-IFA (Intermediate Filament Antigen) antibody to investigate the expression of intermediate filament proteins in the mature oocyte of the teleostCyprinus carpio. Several polypeptides have been identified, showing molecular weights ranging from 43 to 65kDa. Two-dimensional analysis of the immunoreactive species revealed the presence of at least six major protein spots and a series of minor components, grouped in quite a narrow pI range from 5.52 to 6.28. The general complexity of the carp oocyte cytokeratin-related cytoskeleton appears to be higher than those described for oocytes of other vertebrate species.


1997 ◽  
Vol 18 (3-4) ◽  
pp. 568-572 ◽  
Author(s):  
Ben R. Herbert ◽  
Mark P. Molloy ◽  
Jun X. Yan ◽  
Andrew A. Gooley ◽  
Warren G. Bryson ◽  
...  

1983 ◽  
Vol 97 (6) ◽  
pp. 1860-1874 ◽  
Author(s):  
M G Price ◽  
E Lazarides

The expression of two intermediate filament-associated proteins, paranemin (280,000 mol wt) and synemin (230,000 mol wt), was investigated with respect to the expression of two core intermediate filament proteins, desmin and vimentin, in various embryonic and adult chicken muscle and nonmuscle cells. All developing muscle cells, regardless of their type, simultaneously express desmin, vimentin, paranemin, and synemin. However, a difference is observed in the expression of paranemin in adult muscle. This protein is removed during differentiation of both fast and slow skeletal muscle, visceral smooth muscle, and the smooth muscle of muscular arteries, but remains in mature myocardial cells, cardiac conducting fibers, and the smooth muscle cells of elastic arteries. Some of these cells express vimentin, others desmin, and still others a mixture of the two. On the other hand, synemin is expressed in all the above types of adult muscle cells except myocardial cells. Adult myocardial cells also lack vimentin, and its presence is gradually reduced after hatching. Since in adult striated muscle all expressed intermediate filament proteins are found predominantly in association with the peripheries of myofibrillar Z discs, these results suggest that a change in the composition of skeletal and cardiac muscle Z discs occurs during chicken development and maturation. Erythrocytes that express synemin and vimentin do not express paranemin, while both embryonic and adult Schwann cells co-express paranemin and vimentin, but not synemin. Endothelial cells of muscular vessels express paranemin, while those of elastic vessels do not, and neither contains synemin. Paranemin and synemin are not expressed in neurons, epithelial, and most glial cells, suggesting that these two polypeptides are expressed only in conjunction with desmin or vimentin. These results suggest that the composition of intermediate filaments changes during chicken development, not only with respect to their core subunit proteins but also with respect to two associated polypeptides, particularly in muscle cells.


1984 ◽  
Vol 65 (1) ◽  
pp. 1-20
Author(s):  
P. Traub ◽  
C.E. Vorgias

When the intermediate filament proteins vimentin and desmin were reacted for a short period of time with the arginine-specific reagent 1,2-cyclohexanedione, the modification had a severe, inhibitory effect on the assembly of intermediate filaments and on the susceptibility of the basic, amino-terminal polypeptide of both proteins to degradation by the intermediate filament-specific, Ca2+-activated proteinase. However, it had only a slightly inhibitory effect on the binding of vimentin and desmin to ribosomal RNA from Ehrlich ascites tumour cells. Since the Ca2+-activated proteinase is very likely to be a trypsin-like enzyme, with a preference for arginyl and lysyl peptide bonds, the results indicate that the arginine residues of the amino-terminal polypeptide of vimentin and desmin are highly essential for filament assembly but largely dispensable for the binding of both proteins to nucleic acids. This was supported by the observation that two breakdown products of vimentin lacking a 5 X 10(3) Mr and an 8 X 10(3) Mr polypeptide from the amino terminus, respectively, did not assemble into intermediate filaments but were still capable of binding to rRNA. Both polypeptides also bound to single-stranded DNA-cellulose under non-denaturing conditions, but passed the affinity column in the presence of 6 M-urea. Thus, the binding of vimentin to nucleic acids appears to be based on two components: a non-specific electrostatic interaction mediated by the positively charged arginine residues of the amino-terminal polypeptide that is insensitive to denaturation by urea, and a specific interaction that is sensitive to denaturation by urea.


2019 ◽  
Vol 30 (3) ◽  
pp. 357-369 ◽  
Author(s):  
Mansi Gujrati ◽  
Rohit Mittal ◽  
Lakhan Ekal ◽  
Ram Kumar Mishra

The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper-­SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205038 ◽  
Author(s):  
Bertrand Favre ◽  
Nadja Begré ◽  
Jamal-Eddine Bouameur ◽  
Prakash Lingasamy ◽  
Gloria M. Conover ◽  
...  

1986 ◽  
Vol 240 (2) ◽  
pp. 593-596
Author(s):  
P Strocchi ◽  
J M Gilbert

One of the most abundant acidic proteins in rat brain has an Mr of 68,000 and a pI of 5.6 (68K 5.6 protein) when analysed by two-dimensional gel electrophoresis. The 68K 5.6 protein was found in large relative amounts in brain cytoskeleton preparations and in membrane and supernatant fractions. High-salt washing and proteolytic digestion did not remove this protein from the membrane elements. The 68K 5.6 protein was also found in the microtubule-associated protein fraction of purified microtubules and was present in large relative amounts in preparations of intermediate-filament proteins. The 68K 5.6 protein binds to calmodulin in the presence of Ca2+ ions, and we found it to be an abundant acidic calmodulin-binding protein in brain tissue.


1995 ◽  
Vol 73 (9-10) ◽  
pp. 627-634 ◽  
Author(s):  
Monique Cadrin ◽  
Maria-Grazia Martinoli

Intermediate filament proteins belong to a multigene family and constitute an important cytoskeletal component of most vertebrate cells. Their pattern of expression is tissue specific and is highly controlled during embryonic development. Numerous pathologies are known to be associated with modifications of intermediate filament organisation, although their precise role has not yet been elucidated. The present review focuses on the most recent data concerning the possible causes of intermediate filaments disorganization in specific pathologic conditions affecting the epidermis, the liver, and the nervous system. We discuss the formation of abnormal intermediate filament networks that arise as a consequence of mutations that directly affect intermediate filament structure or are induced by multifactorial causes such as modifications of post-translational processes and changes in the levels of expression.Key words: intermediate filaments, phosphorylation, Mallory bodies, Lewy bodies, degenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document