Anti-tubulin antibodies locate the blepharoplast during spermatogenesis in the fern Platyzoma microphyllum R.Br.: a correlated immunofluorescence and electron-microscopic study

1986 ◽  
Vol 81 (1) ◽  
pp. 243-265
Author(s):  
J.H. Doonan ◽  
C.W. Lloyd ◽  
J.G. Duckett

The discovery that the monoclonal anti-tubulin antibody YOL 1/34 recognizes a microtubule organizing centre, the blepharoplast (which arises de novo during the latter stages of spermatogenesis in the fern, Platyzoma microphyllum), has enabled us to follow it and associated microtubules throughout most of its ontogeny. By correlating electron-microscopic and immunofluorescence observations, YOL 1/34 is seen to stain the blepharoplast uniformly at a time when no microtubules are present within the organelle. Later, staining becomes intense at the surface, concomitant with the re-location of cylindrical channels to the periphery of the blepharoplast. During anaphase of the ultimate division of the spermatid mother cell the blepharoplast moves to the spindle poles and sharpens the otherwise barrel-shaped mitotic apparatus. Prior to this stage the blepharoplast is, however, off-centre and at variable positions around the poles. Later still, in the differentiating spermatids, the blepharoplast is the focus for radiating cytoplasmic microtubules that abut directly onto the electron-dense organelle, penetrating the ribosome-free halo. The three main conclusions are: that tubulin in a pre-microtubular form is associated with the cylindrical channels that arise de novo within the previously amorphous blepharoplast and act as a template in basal body formation; that the late appearance of the blepharoplast as a focus for the spindle poles during the final mitosis provides strong argument against its functioning during spindle pole initiation (despite its ability to sharpen the poles at anaphase); that the blepharoplast does seem to act as a microtubule organizing centre in the mitotically quiescent spermatid.

1993 ◽  
Vol 106 (3) ◽  
pp. 967-981 ◽  
Author(s):  
E.C. Paul ◽  
A. Quaroni

The mAb RK7, previously shown to recognize keratin 19, was also found to cross-react with a biologically unrelated 102 kDa protein, which becomes associated with the poles of the mitotic apparatus. This newly identified protein, called cytocentrin, is a stable cellular component, may be at least in part phosphorylated, and displays a cell cycle-dependent cellular localization. In interphase cells, it is diffusely distributed in the cytosol and shows no affinity for cytoplasmic microtubules. It becomes localized to the centrosome in early prophase, prior to nuclear envelope breakdown, separation of replicated centrosomes, and nucleation of mitotic apparatus microtubules. During metaphase, cytocentrin is located predominately at the mitotic poles, often appearing as an aggregate of small globular sub-components; it also associates with some polar microtubules. In late anaphase/early telophase cytocentrin dissociates entirely from the mitotic apparatus and becomes temporarily localized with microtubules in the midbody, from which it disappears by late telophase. In taxol-treated cells cytocentrin was associated with the center of the miniasters but also showed affinity for some cytoplasmic microtubules. Studies employing G2-synchronized cells and nocodazole demonstrated that cytocentrin can become associated with mitotic centrosomes independently of tubulin polymerization and that microtubules regrow from antigen-containing foci. We interpret these results to suggest that cytocentrin is a cytoplasmic protein that becomes specifically activated or modified at the onset of mitosis so that it can affiliate with the mitotic poles where it may provide a link between the pericentriolar material and other components of the mitotic apparatus.


2004 ◽  
Vol 165 (5) ◽  
pp. 663-671 ◽  
Author(s):  
Kumi Matsuura ◽  
Paul A. Lefebvre ◽  
Ritsu Kamiya ◽  
Masafumi Hirono

How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth. Electron microscopic observation suggested that bld10 cells totally lack basal bodies. The product of the BLD10 gene (Bld10p) was found to be a novel coiled-coil protein of 170 kD. Immunoelectron microscopy localizes Bld10p to the cartwheel, a structure with ninefold rotational symmetry positioned near the proximal end of the basal bodies. Because the cartwheel forms the base from which the triplet microtubules elongate, we suggest that Bld10p plays an essential role in an early stage of basal body assembly. A viable mutant having such a severe basal body defect emphasizes the usefulness of Chlamydomonas in studying the mechanism of basal body/centriole assembly by using a variety of mutants.


1998 ◽  
Vol 111 (17) ◽  
pp. 2487-2495 ◽  
Author(s):  
S.A. Endow ◽  
D.J. Komma

The meiosis II spindle of Drosophila oocytes is distinctive in structure, consisting of two tandem spindles with anastral distal poles and an aster-associated spindle pole body between the central poles. Assembly of the anastral:astral meiosis II spindle occurs by reorganization of the meiosis I spindle, without breakdown of the meiosis I spindle. The unusual disk- or ring-shaped central spindle pole body forms de novo in the center of the elongated meiosis I spindle, followed by formation of the central spindle poles. gamma-Tubulin transiently localizes to the central spindle pole body, implying that the body acts as a microtubule nucleating center for assembly of the central poles. Localization of gamma-tubulin to the meiosis II spindle is dependent on the microtubule motor protein, Nonclaret disjunctional (Ncd). Absence of Ncd results in loss of gamma-tubulin localization to the spindle and destabilization of microtubules in the central region of the spindle. Assembly of the anastral:astral meiosis II spindle probably involves rapid reassortment of microtubule plus and minus ends in the center of the meiosis I spindle - this can be accounted for by a model that also accounts for the loss of gamma-tubulin localization to the spindle and destabilization of microtubules in the absence of Ncd.


1972 ◽  
Vol 55 (2) ◽  
pp. 368-389 ◽  
Author(s):  
James R. Aist ◽  
P. H. Williams

Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.


1978 ◽  
Vol 56 (9) ◽  
pp. 1206-1211 ◽  
Author(s):  
Y. Nakai ◽  
R. Ushiyama

In the course of electron microscopic observations on basidiosporogenesis of Lentinus edodes (Berk.) Sing., the cytoplasmic microtubules, which are about 24 nm in diameter and associate closely with the postmeiotic nuclei, were observed to be common during movement of nuclei from a basidium into the respective basidiospores through sterigmata. These microtubules orient striately from the spindle-pole body (SPB), situated at the leading portion of a migrating nucleus, into the cytoplasm of a nearly mature basidiospore and appear to precede the migrating nucleus. The association of microtubules radiating from the SPB with the interior of a migrating nucleus was particularly indicated as being a characteristic event observed during nuclear movement of L. edodes. After completion of nuclear movement, these microtubules disappear completely. It is suggested that the microtubules associated with SPB may play an essential role in nuclear movement from the basidium to the basidiospore.


1997 ◽  
Vol 136 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Alexey Khodjakov ◽  
Richard W. Cole ◽  
Bruce F. McEwen ◽  
Karolyn F. Buttle ◽  
Conly L. Rieder

We used laser microsurgery to cut between the two sister kinetochores on bioriented prometaphase chromosomes to produce two chromosome fragments containing one kinetochore (CF1K). Each of these CF1Ks then always moved toward the spindle pole to which their kinetochores were attached before initiating the poleward and away-from-the-pole oscillatory motions characteristic of monooriented chromosomes. CF1Ks then either: (a) remained closely associated with this pole until anaphase (50%), (b) moved (i.e., congressed) to the spindle equator (38%), where they usually (13/19 cells) remained stably positioned throughout the ensuing anaphase, or (c) reoriented and moved to the other pole (12%). Behavior of congressing CF1Ks was indistinguishable from that of congressing chromosomes containing two sister kinetochores. Three-dimensional electron microscopic tomographic reconstructions of CF1Ks stably positioned on the spindle equator during anaphase revealed that the single kinetochore was highly stretched and/or fragmented and that numerous microtubules derived from the opposing spindle poles terminated in its structure. These observations reveal that a single kinetochore is capable of simultaneously supporting the function of two sister kinetochores during chromosome congression and imply that vertebrate kinetochores consist of multiple domains whose motility states can be regulated independently.


2009 ◽  
Vol 184 (5) ◽  
pp. 677-690 ◽  
Author(s):  
Alain D. Silk ◽  
Andrew J. Holland ◽  
Don W. Cleveland

Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we demonstrate that NuMA is an essential mitotic component with distinct contributions to the establishment and maintenance of focused spindle poles. When mitotic NuMA function is disrupted, centrosomes provide initial focusing activity, but continued centrosome attachment to spindle fibers under tension is defective, and the maintenance of focused kinetochore fibers at spindle poles throughout mitosis is prevented. Without centrosomes and NuMA, initial establishment of spindle microtubule focusing completely fails. Thus, NuMA is a defining feature of the mammalian spindle pole and functions as an essential tether linking bulk microtubules of the spindle to centrosomes.


2001 ◽  
Vol 152 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Michael B. Gordon ◽  
Louisa Howard ◽  
Duane A. Compton

Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.


1999 ◽  
Vol 145 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Subhendra N. Mattagajasingh ◽  
Shu-Ching Huang ◽  
Julia S. Hartenstein ◽  
Michael Snyder ◽  
Vincent T. Marchesi ◽  
...  

Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788–1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22–24-kD domain.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Sign in / Sign up

Export Citation Format

Share Document