Assembly and dynamics of an anastral:astral spindle: the meiosis II spindle of Drosophila oocytes

1998 ◽  
Vol 111 (17) ◽  
pp. 2487-2495 ◽  
Author(s):  
S.A. Endow ◽  
D.J. Komma

The meiosis II spindle of Drosophila oocytes is distinctive in structure, consisting of two tandem spindles with anastral distal poles and an aster-associated spindle pole body between the central poles. Assembly of the anastral:astral meiosis II spindle occurs by reorganization of the meiosis I spindle, without breakdown of the meiosis I spindle. The unusual disk- or ring-shaped central spindle pole body forms de novo in the center of the elongated meiosis I spindle, followed by formation of the central spindle poles. gamma-Tubulin transiently localizes to the central spindle pole body, implying that the body acts as a microtubule nucleating center for assembly of the central poles. Localization of gamma-tubulin to the meiosis II spindle is dependent on the microtubule motor protein, Nonclaret disjunctional (Ncd). Absence of Ncd results in loss of gamma-tubulin localization to the spindle and destabilization of microtubules in the central region of the spindle. Assembly of the anastral:astral meiosis II spindle probably involves rapid reassortment of microtubule plus and minus ends in the center of the meiosis I spindle - this can be accounted for by a model that also accounts for the loss of gamma-tubulin localization to the spindle and destabilization of microtubules in the absence of Ncd.

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


1997 ◽  
Vol 110 (20) ◽  
pp. 2533-2545 ◽  
Author(s):  
A.M. Tassin ◽  
C. Celati ◽  
M. Paintrand ◽  
M. Bornens

Although varying in size and complexity, centrosomes have conserved functions throughout the evolutionary range of eukaryotes, and thus may display conserved components. In this work, we took advantage of the recent advances in the isolation of the budding yeast spindle pole body, the development of specific immunological probes and the molecular characterisation of genes involved in spindle pole body duplication or assembly. Screening a monoclonal antibody library against Saccharomyces cerevisiae spindle pole body components, we found that two monoclonal antibodies, directed against two different parts of the yeast Spc110p, decorate the centrosome from mammalian cells in an asymmetrical manner. Western blot experiments identified a 100 kDa protein specifically enriched in centrosome preparations from human cells. This protein is phosphorylated during mitosis and is tightly associated with the centrosome: only denaturing conditions such as 8 M urea were able to solubilise it. Purified immunoglobulins directed against Spc110p inhibit microtubule nucleation on isolated human centrosomes, using brain phosphocellulose-tubulin or Xenopus egg extract tubulin. This result suggested that the centrosomal 100 kDa protein could be involved in a microtubule nucleation complex. To test this hypothesis, we turned to Xenopus species, in which mAb anti-Spc110p decorated centrosomes from somatic cells and identified a 116 kDa protein in egg extract. We performed a partial purification of the gamma-tubulin-ring complex from egg extract. Sucrose gradient sedimentation, immunoprecipitation and native gels demonstrated that the Xenopus 116 kDa protein and gamma-tubulin were found in the same complex. Altogether, these results suggest the existence of an yeast Spc110-related protein in vertebrate centrosomes which is involved in microtubule nucleation.


2010 ◽  
Vol 21 (21) ◽  
pp. 3693-3707 ◽  
Author(s):  
Erin M. Mathieson ◽  
Yasuyuki Suda ◽  
Mark Nickas ◽  
Brian Snydsman ◽  
Trisha N. Davis ◽  
...  

During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.


2001 ◽  
Vol 183 (7) ◽  
pp. 2372-2375 ◽  
Author(s):  
Andreas Wesp ◽  
Susanne Prinz ◽  
Gerald R. Fink

ABSTRACT During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.


2002 ◽  
Vol 115 (5) ◽  
pp. 913-922 ◽  
Author(s):  
Maria Giovanna Riparbelli ◽  
Giuliano Callaini ◽  
David M. Glover ◽  
Maria do Carmo Avides

Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster,which in asp mutants remains diminutive and so prevents migration of the pronuclei.


1996 ◽  
Vol 109 (1) ◽  
pp. 165-177 ◽  
Author(s):  
H. Masuda ◽  
T. Shibata

The ability of the Schizosacchromyces pombe spindle pole body to nucleate microtubules is activated at the onset of mitosis for forming a mitotic spindle, but it is inactivated during interphase. We have previously developed an in vitro assay for studying the molecular mechanism of spindle pole body activation using permeabilized interphase S. pombe cells and Xenopus mitotic extracts. We have shown that the interphase spindle pole body is activated indirectly by p34cdc2 protein kinase in Xenopus mitotic extracts. In this study we examined the role of gamma-tubulin, a component of both interphase and mitotic spindle pole body, in formation of the microtubule nucleating complex at the mitotic spindle pole body. A polyclonal antibody specific to S. pombe gamma-tubulin inhibited both activation of the interphase spindle pole body and microtubule nucleation from the mitotic spindle pole body. Addition of bacterially expressed S. pombe gamma-tubulin or its amino-terminal fragments to Xenopus mitotic extracts inhibited spindle pole body activation. Affinity chromatography of partially fractionated Xenopus mitotic extracts with the amino-terminal fragment of S. pombe gamma-tubulin showed that fractions bound to the fragment supported the activation. The fractions did not contain Xenopus gamma-tubulin, showing that activation of the spindle pole body is not due to recruitment of Xenopus gamma-tubulin to the spindle pole body. The spindle pole body activation occurred in extracts depleted of p34cdc2 protein kinase or MAP kinase. The activity of the fractions bound to the fragment was inhibited by a protein kinase inhibitor, staurosporine. These results suggest that S. pombe gamma-tubulin is a component of the microtubule nucleating complex, and that the function of proteins that interact with gamma-tubulin is required for activation of the spindle pole body. We present possible models for the activation that convert the immature microtubule nucleating complex at interphase into the mature microtubule nucleating complex at mitosis.


2001 ◽  
Vol 12 (9) ◽  
pp. 2646-2659 ◽  
Author(s):  
Changchun Deng ◽  
William S. Saunders

ADY1 is identified in a genetic screen for genes on chromosome VIII of Saccharomyces cerevisiae that are required for sporulation. ADY1 is not required for meiotic recombination or meiotic chromosome segregation, but it is required for the formation of four spores inside an ascus. In the absence of ADY1, prospore formation is restricted to mainly one or two spindle poles per cell. Moreover, the two spores in the dyads of the ady1 mutant are predominantly nonsisters, suggesting that the proficiency to form prospores is not randomly distributed to the four spindle poles in theady1 mutant. Interestingly, the meiosis-specific spindle pole body component Mpc54p, which is known to be required for prospore membrane formation, is localized predominantly to only one or two spindle poles per cell in the ady1 mutant. A partially functional Myc-Pfs1p is localized to the nucleus of mononucleate meiotic cells but not to the spindle pole body or prospore membrane. These results suggest that Pfs1p is specifically required for prospore formation at selected spindle poles, most likely by ensuring the functionality of all four spindle pole bodies of a cell during meiosis II.


2003 ◽  
Vol 2 (3) ◽  
pp. 431-445 ◽  
Author(s):  
Mark E. Nickas ◽  
Cindi Schwartz ◽  
Aaron M. Neiman

ABSTRACT Spore formation in Saccharomyces cerevisiae occurs via the de novo synthesis of the prospore membrane during the second meiotic division. Prospore membrane formation is triggered by assembly of a membrane-organizing center, the meiotic outer plaque (MOP), on the cytoplasmic face of the spindle pole body (SPB) during meiosis. We report here the identification of two new components of the MOP, Ady4p and Spo74p. Ady4p and Spo74p interact with known proteins of the MOP and are localized to the outer plaque of the SPB during meiosis II. MOP assembly and prospore membrane formation are abolished in spo74Δ/spo74Δ cells and occur aberrantly in ady4Δ/ady4Δ cells. Spo74p and the MOP component Mpc70p are mutually dependent for recruitment to SPBs during meiosis. In contrast, both Ady4p and Spo74p are present at SPBs, albeit at reduced levels, in cells that lack the MOP component Mpc54p. Our findings suggest a model for the assembled MOP in which Mpc54p, Mpc70p, and Spo74p make up a core structural unit of the scaffold that initiates synthesis of the prospore membrane, and Ady4p is an auxiliary component that stabilizes the plaque.


Genome ◽  
1992 ◽  
Vol 35 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Namboori B. Raju ◽  
John F. Leslie

Wild-collected strains of Neurospora crassa harbor recessive mutations that are expressed in the sexual phase when homozygous. Thirty-two representative mutants that produced barren perithecia were examined cytologically. Six of these mutants failed to form asci. Of the remaining 26, chromosome pairing was disturbed in 12 and meiosis was disturbed at pachytene or diplotene in 5. Seven mutants showed normal meiosis I but then diverged from the normal sequence, and two showed perithecial beak abnormalities. In many mutants, ascus development and nuclear divisions continued after the initial defect, albeit abnormally. Nuclear divisions were often delayed, essentially uncoupling them from other ascus events such as the formation of enlarged spindle pole body plaques, ascospore wall membranes, and spore delimitation. All 32 mutants were recessive and none showed obvious morphological abnormalities during vegetative growth. This phenotype contrasts sharply with that of numerous laboratory-induced ascus mutants, which are frequently expressed pleiotropically in the vegetative phase and several are dominant in the sexual phase.Key words: natural populations, sexual phase, recessive mutations, meiotic mutants, ascus development.


Sign in / Sign up

Export Citation Format

Share Document