Reassembly of microtubules in Nitella tasmanica: assembly of cortical microtubules in branching clusters and its relevance to steady-state microtubule assembly

1989 ◽  
Vol 93 (4) ◽  
pp. 705-714
Author(s):  
GEOFFREY O. WASTENEYS ◽  
RICHARD E. WILLIAMSON

Giant internodal cells of Nitella tasmanica have cortical microtubules beneath the plasma membrane and endoplasmic microtubules associated with sub-cortical actin bundles and nuclei. We depolymerized the microtubules with oryzalin and followed their reassembly by immunofluorescence. At 18°C (the standard temperature of culture), microtubules were lost from young cells within 10 min and the first microtubules were detected in the cortex within 20 min of washing out the herbicide. Microtubules of older cells disassembled and re-formed more slowly. Continued cortical microtubule assembly was at acute angles to the first-formed microtubules, building branching clusters of microtubules. At 25°C, cortical microtubule assembly generated less extensively branched clusters and was completed more rapidly. Larger clusters but shorter MTs were generated in older cells. Reassembly of microtubules in the endoplasm only began 50 min after the removal of oryzalin. We therefore conclude that assembly proceeded independently in the cortex and endoplasm. Cortical assembly involves scattered assembly events initiating microtubules from which, as the latter elongate, further microtubules assemble as branches. We suggest that similar processes operate in steady-state cells and we explain with a simple model why branched clusters of microtubules are unusually large after microtubule depolymerization. By proposing that these processes show differential changes in activity with temperature and during cell ageing, we can account in qualitative terms for the age- and temperature-dependent differences in microtubule reassembly patterns.

Author(s):  
A.R. Hardham ◽  
B.E.S. Gunning

Microtubules in the plant cell cortex are usually aligned parallel to microfibrils of cellulose that are being deposited in the cell wall, and are considered to function in guiding or orienting cellulose synthetase complexes that lie in or on the plasma membrane. The cellulose component is largely responsible for the mechanical reaction of the wall to turgor forces, thereby determining cell size and shape, and therefore the role of the cortical microtubules is a fundamental part of the overall morphogenetic process in plants. It is important to determine the structure of cortical arrays of microtubules and to learn how the cell regulates their development, neither of these aspects having been investigated adequately since the original description likened the microtubules to “hundreds of hoops around the cell”.


2020 ◽  
Author(s):  
Keisuke Ishihara ◽  
Franziska Decker ◽  
Paulo Caldas ◽  
James F. Pelletier ◽  
Martin Loose ◽  
...  

AbstractMicrotubule plus end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were almost two-fold higher in the aster interior compared to the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and MAPs in the interior cytosol compared to that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.


1986 ◽  
Vol 51 (11) ◽  
pp. 2481-2488
Author(s):  
Benitto Mayrhofer ◽  
Jana Mayrhoferová ◽  
Lubomír Neužil ◽  
Jaroslav Nývlt

The paper presents a simple model of recrystallization with countercurrent flows of the solution and the crystals being purified. The model assumes steady-state operating conditions, an equilibrium between the outlet streams of each stage, and the same equilibrium temperature and distribution coefficient for all stages. With these assumptions, the model provides the basis for analyzing the variation in the degree of purity as a function of the number of recrystallization stages. The analysis is facilitated by the use of a diagram constructed for the limiting case of perfect removal of the mother liquor from the crystals between the stages.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 171-174 ◽  
Author(s):  
M. Frank ◽  
F. Gubitz ◽  
W. Ittner ◽  
W. Kreische ◽  
A. Labahn ◽  
...  

The 19F quadrupole coupling constants in CF4, CHF3, CClF3 and CHClF2 are reported. The measurements were carried out temperature dependent using the time differential perturbed angular distribution method (TDPAD). The temperature dependence can be satisfactorily described in the framework of the Bayer-Kushida theory. A simple model is used to explain the appearance of H-F and Cl-F coupling constants in CHF3/CHClF2 and CClF3, respectively.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


1984 ◽  
Vol 98 (3) ◽  
pp. 904-910 ◽  
Author(s):  
W J Deery ◽  
A R Means ◽  
B R Brinkley

A Triton X-100-lysed cell system has been used to identify calmodulin on the cytoskeleton of 3T3 and transformed SV3T3 cells. By indirect immunofluorescence, calmodulin was found to be associated with both the cytoplasmic microtubule complex and the centrosomes. A number of cytoplasmic microtubules more resistant to disassembly upon either cold (0-4 degrees C) or hypotonic treatment, as well as following dilution have been identified. Most of the stable microtubules appeared to be associated with the centrosome at one end and with the plasma membrane at the other end. These microtubules could be induced to depolymerize, however, by micromolar Ca++ concentrations. These data suggest that, by interacting directly with the microtubule, calmodulin may influence microtubule assembly and ensure the Ca++-sensitivity of both mitotic and cytoplasmic microtubules.


Sign in / Sign up

Export Citation Format

Share Document