Memoirs: The Neuro-Muscular Mechanism of the Gill of Pecten

1930 ◽  
Vol s2-73 (291) ◽  
pp. 365-392
Author(s):  
S. B. SETNA

Experimental. 1. The contraction of the adductor-muscle which follows stimulation of the palial nerve is preceded by a marked contraction of the ctenidial axis, so that the gill contracts before the adductor-muscle becomes active. This movement of the ctenidium is abolished if the main branchial nerve is cut near its origin. 2. The gills of Pecten possess a neuromuscular mechanism which is to some extent independent of the rest of the body, so that excised gills when stimulated react in the same way as an attached gill. 3. The lamellae of the gill possess two distinct types of movement. (a) When the surface of the gill is stimulated by contact with a glass rod or by carmine particles, the frontal surfaces of the two lamellae approach each other; the movement very often being executed by the lamella which is not actually being stimulated. The lateral extent of these movements (concertina movements) is roughly proportional to the intensity of the stimulus. Such movements normally appear to transfer the bulk of the material on to the mantle. Separation of the main branchial nerve abolishes these movements. (b) Each principal filament is capable of moving the ordinary filaments to which it is attached. This movement (flapping movement) is due to the movements of the interfilamentar junctions which alternatively move up and down at right angles to their length. This motion is independent of the branchial nerve and can be produced by direct stimulation of very tiny pieces of the individual filaments. 4. The significance of gill movements to feeding habits is discussed. The course of food particles depends on the nature of the stimuli affecting the gill. Histological. 5. The ctenidial axis and the principal filaments have a stratum of anastomosing nerve-cells which appear to form a true nerve-net comparable to that of the mantle. 6. The gill receives nerve-fibres from two sources, the brain and the visceral ganglion. The subsidiary branchial nerve is a structure hitherto unknown in the molluscan gill; so far its function is unknown. Each gill has four main longitudinal nerve-trunks. 7. The osphradium of the gill has a much more extensive distribution than has hitherto been supposed. 8. Two sets of muscles exist at the base of the gill-filaments, and these are responsible for movements of the lamellae. The muscle-fibres are non-striated. 9. The principal filaments are connected to the ordinary filaments by processes containing true muscle-cells, and by these cells movements of the filaments are effected.

In the study of the phenomena of anaphylaxis there are certain points on which some measure of agreement seems to have been attained. In the case of anaphylaxis to soluble proteins, with which alone we are directly concerned in this paper, the majority of investigators probably accept the view that the condition is due to the formation of an antibody of the precipitin type. Concerning the method, however, by which the presence of this antibody causes the specific sensitiveness, the means by which its interaction with the antibody produces the anaphylactic shock, there is a wide divergence of conception. Two main currents of speculation can be discerned. One view, historically rather the earlier, and first put forward by Besredka (1) attributes the anaphylactic condition to the location of the antibody in the body cells. There is not complete unanimity among adherents of this view as to the nature of the antibody concerned, or as to the class of cells containing it which are primarily affected in the anaphylactic shock. Besredka (2) himself has apparently not accepted the identification of the anaphylactic antibody with a precipitin, but regards it as belonging to a special class (sensibilisine). He also regards the cells of the central nervous system as those primarily involved in the anaphylactic shock in the guinea-pig. Others, including one of us (3), have found no adequate reason for rejecting the strong evidence in favour of the precipitin nature of the anaphylactic antibody, produced by Doerr and Russ (4), Weil (5), and others, and have accepted and confirmed the description of the rapid anaphylactic death in the guinea-pig as due to a direct stimulation of the plain-muscle fibres surrounding the bronchioles, causing valve-like obstruction of the lumen, and leading to asphyxia, with the characteristic fixed distension of the lungs, as first described by Auer and Lewis (6), and almost simultaneously by Biedl and Kraus (7). But the fundamental conception of anaphylaxis as due to cellular location of an antibody, and of the reaction as due to the union of antigen and antibody taking place in the protoplasm, is common to a number of workers who thus differ on details.


1958 ◽  
Vol 17 (2) ◽  
pp. 134-142 ◽  
Author(s):  
MARY F. LOCKETT ◽  
S. N. GANJU

SUMMARY Pretreatment of salt-maintained adrenalectomized mice for 6 days with 3–6 mg dried thyroid gland, or with 0·25 μg of either l-thyroxine or l-triiodothyronine, per mouse per day, delayed the early onset of both neuromuscular and muscular failure which are characteristic of these animals. Dose-effect curves for the action of thyroxine on the myoneural junctions and striped muscle fibres are given. A concentration of 0·05μg l-triiodothyronine/100 ml. bath fluid antagonized potassium reduction of the maximal twitch of the normal rat diaphragm in response to nerve stimulation, but not in response to direct stimulation of the curarized muscle.


1972 ◽  
Vol 57 (2) ◽  
pp. 435-448 ◽  
Author(s):  
B. L. ROBERTS ◽  
I. J. RUSSELL

1. The activity of efferent neurones innervating lateral-line organs on the body of dogfish was followed by recording from filaments of cranial nerve X in 41 decerebrate preparations. 2. The efferent nerves were not spontaneously active. 3. Tactile stimulation to the head and body, vestibular stimulation and noxious chemical stimulation were followed by activity of the efferent nerves. 4. In contrast, natural stimulation of lateral-line organs (water jets) did not reflexly evoke discharges from the efferent fibres. 5. Reflex efferent responses were still obtained to mechanical stimulation even after the lateral-line organs had been denervated. 6. Electrical stimulation of cranial nerves innervating lateral-lines organs was followed by reflex activity of the efferent fibres. But similar stimuli applied to other cranial nerves were equally effective in exciting the efferent system. 7. Vigorous movements of the fish, involving the white musculature, were preceded and accompanied by activity of the efferent fibres which persisted as long as the white muscle fibres were contracting. 8. Rhythmical swimming movements were accompanied by a few impulses in the efferent fibres grouped in bursts at the same frequency as the swimming movements. 9. It is concluded that the efferent neurones cannot contribute to a feedback regulatory system because they are not excited by natural stimulation of the lateral-line sense organs. The close correlation found between efferent activity and body movement suggests that the efferent system might operate in a protective manner to prevent the sense organs from being over-stimulated when the fish makes vigorous movements.


1965 ◽  
Vol 42 (2) ◽  
pp. 307-322 ◽  
Author(s):  
FRANKLIN B. KRASNE

1. Branchiomma's rapid escape from tactile stimuli is mediated by the pair of giant nerve axons which run the length of the body above the ventral nerve cord. 2. The giant neurons are connected by very stable, polarized junctions to giant motor axons. 3. The giant-fibre escape reflex fails if tactile stimuli are repeated; a non-giant system which continues to cause slower escape eventually fails also. 4. Recovery from reflex failure is slow. 5. The failure of the rapid escape reflex occurs prior to the giant fibre. It is not primarily due to sensory ending accommodation. It cannot be caused by direct stimulation of the giant fibres.


1962 ◽  
Vol 39 (2) ◽  
pp. 219-227
Author(s):  
M. B. V. ROBERTS

1. A nerve-muscle preparation including the longitudinal musculature and the giant fibres in the nerve cord of the earthworm is described. 2. Direct stimulation of the nerve cord with single shocks of increasing intensity results in two types of response: (a) a low threshold, very small twitch, resulting from a single impulse in the median giant fibre, and (b) a higher threshold, slightly larger twitch, resulting from single impulses in the median and lateral giant fibres. Both responses are highly susceptible to fatigue. 3. Stimulation of the body surface evokes a much more powerful contraction which is associated with a burst of impulses in the giant fibre. The strength of the contraction depends upon the number of impulses in the burst and this in turn upon the intensity and duration of the stimulus.


In the previous communication, p. 233, experiments were described dealing with the effect of contraction of the skeletal muscle upon its blood flow. Short and prolonged tetanic contractions were evoked in various skeletal muscles by stimulation of their cut or uncut motor nerve or by direct stimulation of the muscle. Stimulation of the motor nerve as well as that of the muscle ma involve to an unknown extent the vasomotor innervation of the respective muscles and, although strong evidence was provided that none of the effects observed were even in part due to a direct excitation of the vasomotor fibres, we thought it necessary to repeat our experiments under conditions in which direct excitation of vasomotor fibres is definitely avoided. The present communication describes experiments on the reflex contraction of the tibialis and of the quadriceps femoris (vastocrureus) muscles. So far as we are aware, there is only one reference in the literature which related to circulatory conditions in muscles during a reflex contraction. Denny-Brown (1929), by direct microsopical observations of the surface of the soleus muscle during a stretch reflex, noticed that even a modest amount of pull on the tendon opens up numerous capillaries and hastens the flow of blood in them to a remarkable extent. The tension developed was sometimes as great as 1∙5 kg. Weight. As a result of this observation, Denny-Brown believes that the capillaries are not compressed by the muscle fibres when these contract reflexly. It is, however, quite likely that the circulatory conditions in the superficial layers of the muscle differ from those in the depth of the muscle. Moreover, it is extremely difficult to remove completely all the connective tissue from the surface of the muscle, and we know from Rein's experiments (Keller, Loeser, and Rein, 1930), as well as from our own previous experiments (Anrep, Blalock, and Samaan, 1933), that during the contraction of a muscle there may be considerable dilatation in the resting tissues. In order to determine the total arterial inflow into the tibialis anticus during its reflex contraction, we performed experiments which were similar to those described in our previous communication.


2010 ◽  
Vol 55 (2) ◽  
Author(s):  
Oleg Tolstenkov ◽  
Nadezhda Terenina ◽  
Elena Serbina ◽  
Margaretha Gustafsson

AbstractThe organisation of the neuromuscular system in cercariae, metacercariae and adult Opisthorchis felineus was studied. The patterns of nerves immunoreactive (IR) to antibodies towards serotonin (5-HT) and FMRFamide are described in relation to the musculature, stained with TRITC-conjugated phalloidin. The general organisation of the musculature in the body wall, suckers, pharynx, intestine and sphincter of the excretory pore remains the same from the larval stages to the adult worms. However, the diameter of the individual muscle fibres increases distinctly in the adult worms. The general pattern of 5-HT IR fibres in cercariae, metacercariae and adult O. felineus remains the same. Despite the large increase in body size, the number of 5-HT IR neurones remains almost the same in the cercariae and metacercariae and only a modest increase in number of neurones was observed in the adult worms. Thus the proportion of 5-HT IR neurones/body mass is greatest in the actively moving cercariae. Anti-FMRFamide stains the nervous system strongly.


1978 ◽  
Vol 41 (6) ◽  
pp. 1592-1613 ◽  
Author(s):  
W. K. Dong ◽  
H. Ryu ◽  
I. H. Wagman

1. An extracellular study of the cat medial thalamus has revealed four types of somatosensory neurons. These were located primarily in the n. parafascicularis, n. subparafascicularis, and n. centralis lateralis; none were found in the n. centrum medianum. There was no functional segregation of neurons within each nucleus or between nuclei. Each type of neuron had large and often bilateral receptive areas. No somatotopic organization of neurons was found within the medial thalamus. 2. Noxious (N) and noxious-tap (NT) neurons comprising 72% of the sample (78 of 109 total) were considered to be nociceptive. N cells responded exclusively to noxious mechanical stimulation of skin, muscle fascia, tendons, and joints, and to direct stimulation of A-delta- and C-fiber groups in cutaneous, articular, and muscle nerves. NT cells responded to noxious and tap stimulation in a differential manner and to stimulation of the entire spectrum of A- and C-fibers. N and NT cells accurately signaled the duration of noxious mechanical stimulation. Their nociceptive responses were also graded as a function of both noxious stimulus intensity and the number of activated A-delta- and C-fibers. Stimulation of A- and C-fibers evoked, respectively, an inital burst and a late burst of discharges. A brief period of inhibition intervened between the initial and late bursts of NT cells. Prolonged afterdischarge was often observed following noxious natural stimulation or stimulation of A-delta- and C-fibers. The phenomenon of discharge "windup" was observed during iterative stimulation of C-fibers. 3. Tap (T) neurons (10%) responded only to brisk but innocuous taps applied to skin or underlying tissue. These cells were driven only by activation of A-alpha- and A-beta-fibers. The response to such stimulation was seen as an initial burst of discharges followed by an inhibitory period. 4. Inhibited (I) neurons (18%) had resting discharges that were inhibited by noxious stimuli and stimulation of A-beta- and C-fiber groups. 5. The results obtained from monitoring the peripherally evoked responses of nociceptive N and NT neurons before and after selective lesions of the spinal cord strongly suggested that the spinothalamic tracts were the only spinal projections mediating A- and C-fiber input to these cells. Each spinothalamic tract apparently carried information originating from both sides of the body.


1986 ◽  
Vol 55 (5) ◽  
pp. 977-994 ◽  
Author(s):  
E. A. Debski ◽  
W. O. Friesen

Swimming activity evoked by light tactile stimulation of a body wall flap in dissected leech preparations undergoes habituation (5). In this study, we examine the activity of several interneurons (cell 204, cell 205, the S cell, and cell 208) during habituation trials to study further the neuronal mechanisms that mediate this decline in responsiveness. Light tactile stimulation of the leech body wall evoked initially a marked excitatory response in cell 204 homologs (segmental swim-initiating neurons) that preceded the initiation of swimming activity. This response decreased over the course of repeated stimulus trials; however, no marked decline in cell 204 activity accompanied the cessation of swim initiation. A similar activity pattern was observed in cell 205. Thus the habituation of swimming activity to stroking of the body wall is not due solely to reduced input to cell 204 and cell 205. The early activity of cell 204 was not correlated to the duration of subsequent swim episodes. However, the impulse frequency of cell 204 during swim episodes was negatively correlated to the period of swim cycles. This correlation between cell 204 activity and cycle period occurred both within individual episodes as well as between trials in a habituation series. Direct stimulation of cell 204 with current pulses evoked swimming activity reliably for an average of 72 trials. Therefore, habituation that results from stroking the body wall (which occurs after approximately 6 trials) is not mediated by plasticity in the connections between cell 204 and the swim oscillator. The S cell fired repeatedly in response to light tactile stimulation. This response declined with repeated trials. Intense intracellular stimulation of the S cell was sufficient to initiate swimming activity in some preparations. The magnitude and duration of the excitation required to initiate swimming by this means were far greater, however, than that which occurred during stroking the body wall. The response of cell 208 (a swim oscillator cell) to body wall stimulation during habituation trials was variable; usually an initial hyperpolarization was followed by some depolarization. No aspect of this response correlated with the onset of habituation. Our results are consistent with the idea that cell 204 and cell 205 are part of the pathway that mediates swimming activity in response to light tactile stimulation of the leech body wall, and that habituation occurs, in part, as the result of reduced sensory input to this cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document