Observations upon the Nervous Systems of Pelagic Tunicates

1959 ◽  
Vol s3-100 (50) ◽  
pp. 167-181
Author(s):  
QUENTIN BONE

The sensory and motor systems of the pelagic tunicates Doliolum, Salpa, and Thalia are described, chiefly from observations made upon the living animals by phase-contrast microscopy. These observations confirm and extend previous work, showing that the sensory systems of these animals are anatomically highly specialized. Details of the sensory cells are shown from living specimens. It is shown that the motor systems of Doliolum and the salpa are essentially similar, but that of Doliolum is less specialized. The condition of the visceral nervous system in these animals is discussed, and it is concluded that the salpa possess peripheral nerve-cells upon the viscera; illustrations are given of these cells from fixed specimens.

2021 ◽  
Vol 11 (11) ◽  
pp. 4985
Author(s):  
Gianluigi Caccianiga ◽  
Gérard Rey ◽  
Paolo Caccianiga ◽  
Alessandro Leonida ◽  
Marco Baldoni ◽  
...  

The aim of this study was to evaluate two different kinds of rough implant surface and to assess their tendency to peri-implantitis disease, with a follow-up of more than 10 years. Data were obtained from a cluster of 500 implants with Ti-Unite surface and 1000 implants with Ossean surface, with a minimum follow-up of 10 years. Implants had been inserted both in pristine bone and regenerated bone. We registered incidence of peri-implantitis and other causes of implant loss. All patients agreed with the following maintenance protocol: sonic brush with vertical movement (Broxo), interdental brushes, and oral irrigators (Broxo) at least two times every day. For all patients with implants, we evaluated subgingival plaque samples by phase-contrast microscopy every 4 months for a period of more than 10-years. Ti-Unite surface implants underwent peri-implantitis in 1.6% of the total number of implants inserted and Ossean surface implants showed peri-implantitis in 1.5% of the total number of implants. The total percentage of implant lost was 4% for Ti-Unite surfaces and 3.6% for Ossean surfaces. Strict control of implants leads to low percentage of peri-implantitis even for rough surfaces dental implants.


1983 ◽  
Vol 96 (5) ◽  
pp. 1337-1354 ◽  
Author(s):  
P De Camilli ◽  
R Cameron ◽  
P Greengard

Synapsin I (formerly referred to as protein I) is the collective name for two almost identical phosphoproteins, synapsin Ia and synapsin Ib (protein Ia and protein Ib), present in the nervous system. Synapsin I has previously been shown by immunoperoxidase studies (De Camilli, P., T. Ueda, F. E. Bloom, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA, 76:5977-5981; Bloom, F. E., T. Ueda, E. Battenberg, and P. Greengard, 1979, Proc. Natl. Acad. Sci. USA 76:5982-5986) to be a neuron-specific protein, present in both the central and peripheral nervous systems and concentrated in the synaptic region of nerve cells. In those preliminary studies, the occurrence of synapsin I could be demonstrated in only a portion of synapses. We have now carried out a detailed examination of the distribution of synapsin I immunoreactivity in the central and peripheral nervous systems. In this study we have attempted to maximize the level of resolution of immunohistochemical light microscopy images in order to estimate the proportion of immunoreactive synapses and to establish their precise distribution. Optimal results were obtained by the use of immunofluorescence in semithin sections (approximately 1 micron) prepared from Epon-embedded nonosmicated tissues after the Epon had been removed. Our results confirm the previous observations on the specific localization of synapsin I in nerve cells and synapses. In addition, the results strongly suggest that, with a few possible exceptions involving highly specialized neurons, all synapses contain synapsin I. Finally, immunocytochemical experiments indicate that synapsin I appearance in the various regions of the developing nervous system correlates topographically and temporally with the appearance of synapses. In two accompanying papers (De Camilli, P., S. M. Harris, Jr., W. B. Huttner, and P. Greengard, and Huttner, W. B., W. Schiebler, P. Greengard, and P. De Camilli, 1983, J. Cell Biol. 96:1355-1373 and 1374-1388, respectively), evidence is presented that synapsin I is specifically associated with synaptic vesicles in nerve endings.


2011 ◽  
Vol 19 (5) ◽  
pp. 3862 ◽  
Author(s):  
Feng Pan ◽  
Wen Xiao ◽  
Shuo Liu ◽  
FanJing Wang ◽  
Lu Rong ◽  
...  

1990 ◽  
Vol 76 (6) ◽  
pp. 923 ◽  
Author(s):  
Pascal Millet ◽  
William E. Collins ◽  
Claude E. Monken ◽  
Bobby G. Brown

Sign in / Sign up

Export Citation Format

Share Document