p-Toluenesulphonic Acid as a Fixative

1962 ◽  
Vol s3-103 (62) ◽  
pp. 163-171
Author(s):  
MIGNON MALM

p-toluenesulphonic acid in aqueous solution is introduced to histologists and recommended for fixation of the central nervous system by a three-step procedure: flushing the blood-vessels with a saline solution, filling the vessels with the fixative, and delaying the autopsy. With rats and guinea-pigs as test objects, a solution of at least 0.5 M gave excellent results, as evidenced by the minimum of cellular shrinkage, the absence of perivascular and perineuronal spaces, and the clarity of cellular membranes and basiphil material. The neurones, neuroglia, microglia, and blood-vessels were well defined when stained by conventional histological techniques. Cytological details became more prominent because the tissue had shrunk less than in routine preparations. The acid is non-volatile, colourless, pleasant to handle, and low in price.

2022 ◽  
Vol 12 ◽  
Author(s):  
Johannes Flamm ◽  
Sunniva Hartung ◽  
Stella Gänger ◽  
Frank Maigler ◽  
Claudia Pitzer ◽  
...  

We have recently developed a region-specific catheter-based intranasal application method in mice by using CT scan-based 3D cast models of the murine nose (DOI: 10.2376/0005-9366-17,102). This technique is able to specifically deliver drugs to the olfactory region or to the respiratory region only. Thereby, intranasally administered drugs could be delivered either via neuronal connections to the central nervous system or via the well-perfused rostral parts of the nasal mucosa to the systemic circulation. In the present study, we transferred successfully this novel delivery technique to C57Bl/6 mice and determined parameters such as insertions depth of the catheter and maximum delivery volume in dependence to the weight of the mouse. Breathing was simulated to verify that the volume remains at the targeted area. A step-by-step procedure including a video is presented to adopt this technique for standardized and reproducible intranasal central nervous system (CNS) delivery studies (DOI: 10.3390/pharmaceutics13111904).


2010 ◽  
Vol 80 ◽  
pp. S33
Author(s):  
Teruaki Takahashi ◽  
Yuta Takase ◽  
Ryosuke Tadokoro ◽  
Yoshiko Takahashi

2021 ◽  
Vol 22 (15) ◽  
pp. 8248
Author(s):  
Ximena Vásquez ◽  
Pilar Sánchez-Gómez ◽  
Verónica Palma

Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.


2021 ◽  
Vol 15 ◽  
Author(s):  
Michael A. Dixon ◽  
Ursula Greferath ◽  
Erica L. Fletcher ◽  
Andrew I. Jobling

Microglia, the resident immune cells of the central nervous system (CNS), were once considered quiescent cells that sat in readiness for reacting to disease and injury. Over the last decade, however, it has become clear that microglia play essential roles in maintaining the normal nervous system. The retina is an easily accessible part of the central nervous system and therefore much has been learned about the function of microglia from studies in the retina and visual system. Anatomically, microglia have processes that contact all synapses within the retina, as well as blood vessels in the major vascular plexuses. Microglia contribute to development of the visual system by contributing to neurogenesis, maturation of cone photoreceptors, as well as refining synaptic contacts. They can respond to neural signals and in turn release a range of cytokines and neurotrophic factors that have downstream consequences on neural function. Moreover, in light of their extensive contact with blood vessels, they are also essential for regulation of vascular development and integrity. This review article summarizes what we have learned about the role of microglia in maintaining the normal visual system and how this has helped in understanding their role in the central nervous system more broadly.


Sign in / Sign up

Export Citation Format

Share Document