scholarly journals The Inherent Walking Direction Differs for the Prothoracic and Metathoracic Legs of Stick Insects

1985 ◽  
Vol 116 (1) ◽  
pp. 301-311 ◽  
Author(s):  
ULRICH BÄSSLER ◽  
EVA FOTH ◽  
GERHARD BREUTEL

On a slippery surface the forelegs of a decapitated stick insect walk forwards and the hindlegs, backwards. Animals with only forelegs but that are otherwise intact walk forwards, whereas animals with only hindlegs walk mostly backwards. Usually when intact animals start to walk, their hindlegs exert a rearwards thrust on the substrate, but occasionally the starting forces are directed forwards. A rampwise extension of the femoral chordotonal organ in the fixed foreleg of a walking animal first excites the flexor tibiae muscle (positive feedback). Towards the end of the ramp stimulus the activity of the flexor decreases, and the extensor tibiae motor neurones become strongly active. All experiments indicated that the inherent direction of movement of the metathorax is rearwards. In intact animals there must be a coordinating pathway from the prothorax to the metathorax that, together with the suboesophageal ganglion, induces the hindlegs to walk forwards.

2005 ◽  
Vol 93 (3) ◽  
pp. 1255-1265 ◽  
Author(s):  
Björn Ch. Ludwar ◽  
Marie L. Göritz ◽  
Joachim Schmidt

Locomotion requires the coordination of movements across body segments, which in walking animals is expressed as gaits. We studied the underlying neural mechanisms of this coordination in a semi-intact walking preparation of the stick insect Carausius morosus. During walking of a single front leg on a treadmill, leg motoneuron (MN) activity tonically increased and became rhythmically modulated in the ipsilateral deafferented and deefferented mesothoracic (middle leg) ganglion. The pattern of modulation was correlated with the front leg cycle and specific for a given MN pool, although it was not consistent with functional leg movements for all MN pools. In an isolated preparation of a pair of ganglia, where one ganglion was made rhythmically active by application of pilocarpine, we found no evidence for coupling between segmental central pattern generators (CPGs) that could account for the modulation of MN activity observed in the semi-intact walking preparation. However, a third preparation provided evidence that signals from the front leg's femoral chordotonal organ (fCO) influenced activity of ipsilateral MNs in the adjacent mesothoracic ganglion. These intersegmental signals could be partially responsible for the observed MN activity modulation during front leg walking. While afferent signals from a single walking front leg modulate the activity of MNs in the adjacent segment, additional afferent signals, local or from contralateral or posterior legs, might be necessary to produce the functional motor pattern observed in freely walking animals.


1994 ◽  
Vol 187 (1) ◽  
pp. 305-313
Author(s):  
P Skorupski ◽  
P Vescovi ◽  
B Bush

It is now well established that in arthropods movement-related feedback may produce positive, as well as negative, feedback reflexes (Bassler, 1976; DiCaprio and Clarac, 1981; Skorupski and Sillar, 1986; Skorupski et al. 1992; Vedel, 1980; Zill, 1985). Usually the same motor neurones are involved in both negative feedback (resistance) reflex responses and positive feedback reflexes. Reflex reversal involves a shift in the pattern of central inputs to a motor neurone, for example from excitation to inhibition. In the crayfish, central modulation of reflexes has been described in some detail for two basal limb proprioceptors, the thoracocoxal muscle receptor organ (TCMRO) and the thoracocoxal chordotonal organ (TCCO) (Skorupski et al. 1992; Skorupski and Bush, 1992). Leg promotor motor neurones are excited by stretch of the TCMRO (which, in vivo, occurs on leg remotion) in a negative feedback reflex, but when this reflex reverses they are inhibited by the same stimulus. Release of the TCCO (which corresponds to leg promotion) excites some, but not all, promotor motor neurones in a positive feedback reflex. There are at least two ways in which the reflex control of a muscle may be modulated in this system. Firstly, inputs to motor neurones may be routed via alternative reflex pathways to produce different reflex outputs. Secondly, the pattern of inputs to a motor pool may be inhomogeneous, so that activation of different subgroups of the motor pool causes different outputs. Different crayfish promotor motor neurones are involved in different reflexes. On this basis, the motor neurones may be classified into at least two subgroups: those that are excited by the TCCO in a positive feedback reflex (group 1) and those that are not (group 2). Do these motor neurone subgroups have different effects on the promotor muscle, or is the output of the two promotor subgroups summed at the neuromuscular level? To address this question we recorded from the promotor nerve and muscle in a semi-intact preparation of the crayfish, Pacifastacus leniusculus. Adult male and female crayfish, 8-11 cm rostrum to tail, were decapitated and the tail, carapace and viscera removed. The sternal artery was cannulated and perfused with oxygenated crayfish saline, as described previously (Sillar and Skorupski, 1986).


2006 ◽  
Vol 96 (6) ◽  
pp. 3532-3537 ◽  
Author(s):  
Turgay Akay ◽  
Ansgar Büschges

Reinforcement of movement is an important mechanism by which sensory feedback contributes to motor control for walking. We investigate how sensory signals from movement and load sensors interact in controlling the motor output of the stick insect femur–tibia (FT) joint. In stick insects, flexion signals from the femoral chordotonal organ (fCO) at the FT joint and load signals from the femoral campaniform sensilla (fCS) are known to individually reinforce stance-phase motor output of the FT joint by promoting flexor and inhibiting extensor motoneuron activity. We quantitatively compared the time course of inactivation in extensor tibiae motoneurons in response to selective stimulation of fCS and fCO. Stimulation of either sensor generates extensor activity in a qualitatively similar manner but with a significantly different time course and frequency of occurrence. Inactivation of extensor motoneurons arising from fCS stimulation was more reliable but more than threefold slower compared with the extensor inactivation in response to flexion signals from the fCO. In contrast, simultaneous stimulation of both sense organs produced inactivation in motoneurons with a time course typical for fCO stimulation alone, but with a frequency of occurrence characteristic for fCS stimulation. This increase in probability of occurrence was also accompanied by a delayed reactivation of the extensor motoneurons. Our results indicate for the first time that load signals from the leg affect the processing of movement-related feedback in controlling motor output.


1992 ◽  
Vol 173 (1) ◽  
pp. 91-108 ◽  
Author(s):  
R. Kittmann ◽  
J. Schmitz

The femoral chordotonal organ (fCO), one of the largest proprioceptive sense organs in the leg of the stick insect, is important for the control of the femur-tibia joint during standing and walking. It consists of a ventral scoloparium with about 80 sensory cells and a dorsal scoloparium with about 420 sensory cells. The present study examines the function of these scoloparia in the femur-tibia control loop. Both scoloparia were stimulated independently and the responses in the extensor tibiae motoneurones were recorded extra- and intracellularly. The ventral scoloparium, which is the smaller of the two, functions as the transducer of the femur-tibia control loop. Its sensory cells can generate the known resistance reflexes. The dorsal scoloparium serves no function in the femur-tibia control loop and its stimulation elicited no or only minor reactions in the extensor motoneurones. A comparison with other insect leg proprioceptors shows that a morphological subdivision of these organs often indicates a functional specialization.


1987 ◽  
Vol 133 (1) ◽  
pp. 137-156 ◽  
Author(s):  
G. WEILAND ◽  
U. T. KOCH

In the stick insect Carausius momsus, the role of the chordotonal organ was investigated using a new experimental arrangement which artificially closes the femur-tibia control system. The chordotonal organ was stimulated during voluntary movements by applying trapezoidal ramp stimuli in the closed-loop configuration. The results demonstrate that the feedback loop is used to control the end points of joint movement. In addition, it was found that the control system counteracts experimentally applied velocity changes imposed during the middle part of the movements. Acceleration-sensitive units are shown to contribute to the reaction. The results show that during active voluntary movements reflexes measured in the inactive animal are neither simply incorporated in a servo-system nor suppressed. Instead their characteristics are altered so that the voluntary movements are executed as intended by the animal. Thus reflexes cannot be considered as a fixed behavioural unit; rather their changing role must be analysed in the context of the behaviour studied.


1983 ◽  
Vol 105 (1) ◽  
pp. 127-145 ◽  
Author(s):  
ULRICH BÄSSLER ◽  
U. T. A. WEGNER

The denervated thoracic ventral nerve cord produces a motor output which is similar to that observed in the intact animal during irregular leg movements (seeking movements) or rocking, but not walking. When the nerves to some legs are left intact, and the animal walks on a wheel, the motor output in the protractor and retractor motor neurones of the denervated legs is modulated by the stepping frequency of the walking legs. The modulation is similar to that observed in the motor output to a not actually stepping leg of an intact walking animal. When only the crural nerve of one leg is left intact, stimulation of the trochanteral campaniform sensilli induces protractor and retractor motor output to that leg and the leg behind it. In this case the motor output to the ipsilateral leg is in phase. Stimulation of the femoral chordotonal organ influences activity in motor neurones of the extensor tibiae (FETi and SETi) but not those of the protractor and retractor coxae muscles. In a restrained leg of an intact animal stretching of the femoral chordotonal organ excites FETi and SETi as long as the other legs walk (as in a walking leg) and inhibits FETi and SETi (as in a seeking leg) when the other legs are unable to walk.


1989 ◽  
Vol 144 (1) ◽  
pp. 81-111 ◽  
Author(s):  
ANSGAR BÜSCHGES

The femoral chordotonal organ (ChO) of the right middle leg of the inactive stick insect Carausius morosus was stimulated by applying movements having a ramp-like time course, while recordings were made from local and interganglionic interneurones in the anterior ventral median part of the ganglion. Position, velocity and acceleration of the movements were varied independently and the interneurones were categorized on the basis of their responses to the changes in these parameters. Position-sensitivity was always accompanied by responses to velocity and/or acceleration. Velocity-sensitive responses were excitatory or inhibitory and were produced by elongation or relaxation, or by both. In some cases, velocity-sensitive neurones were also affected by position and acceleration. Acceleration responses were always excitatory and were often found in neurones that showed no effects of velocity or position. It is inferred that sensory input from different receptors in the ChO is processed by single interneurones. No interneurone in the recording region was found to be directly involved in the resistance reflex of the extensor tibiae motoneurones, elicited by stimulation of the ChO.


1986 ◽  
Vol 120 (1) ◽  
pp. 369-385 ◽  
Author(s):  
G. WEILAND ◽  
U. BÄSSLER ◽  
M. BRUNNER

An experimental arrangement was constructed which is based on the open-loop femur-tibia control system of two stick insect species (Carausius morosus and Cuniculina impigra). It could be artificially closed in the following way: the position of the tibia was measured by an optical device and this value was used to drive a penmotor which moved the receptor apodeme of the femoral chordotonal organ in the same way as in intact animals. This arrangement allows direct comparison of the behaviour of the open-loop and the closed-loop system as well as introducing an additional delay. The Carausius system has a phase reserve of only 30°-50° and the factor of feedback control approaches 1 between 1 and 2 Hz. This agrees with the observation that an additional delay of 70–200 ms produces long-lasting oscillations of 1–2 Hz. The Cuniculina system has a larger phase reserve and consequently a delay of 200 ms produced no oscillations. All experiments show that extrapolation from the open-loop system to the closed-loop system is valid, despite the non-linear characteristics of the loop. Consequences for servo-mechanisms during walking and rocking movements are discussed.


1995 ◽  
Vol 73 (5) ◽  
pp. 1843-1860 ◽  
Author(s):  
A. Buschges ◽  
H. Wolf

1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.


1988 ◽  
Vol 136 (1) ◽  
pp. 125-147 ◽  
Author(s):  
ULRICH BÄSSLER

A rampwise stretch of the femoral chordotonal organ is known often to elicit a response in the active decerebrate stick insect that is termed an ‘active reaction’, and which can be considered to represent part of the step cycle. During the first part of the response, the flexor motor neurones are excited and the excitatory extensor motor neurones are inhibited, forming a positive feedback loop. When the chordotonal organ reaches a position corresponding to a flexed femur-tibia joint, the flexor motor neurones are inhibited and the extensor motor neurones are excited. In this study, extracellular and intracellular recordings showed that, during an active reaction, the excitation of the retractor unguis motor neurones usually paralleled that of the flexor motor neurones, whereas the protractor coxae motor neurones were less strongly coupled to this system. The first part of the active reaction occurred only at low stimulus velocities. At high stimulus velocities negative feedback was present. The first part therefore represents some kind of velocity-control-system for active flexions. Electrical stimulation of the nerve containing the axons of trochanteral campaniform sensilla and of the hairfield trHP decreased the likelihood that concurrent chordotonal organ stimulation would elicit an active reaction. Furthermore, most of the active reactions that occurred under these stimulus conditions involved only the flexor tibiae muscle. The results indicate that: the walking pattern generator is composed of subunits that are only loosely coupled centrally; it probably does not include a central pattern generator; and generation of an active reaction is a two-step process.


Sign in / Sign up

Export Citation Format

Share Document