Processing of Sensory Input from the Femoral Chordotonal Organ by Spiking Interneurones of Stick Insects

1989 ◽  
Vol 144 (1) ◽  
pp. 81-111 ◽  
Author(s):  
ANSGAR BÜSCHGES

The femoral chordotonal organ (ChO) of the right middle leg of the inactive stick insect Carausius morosus was stimulated by applying movements having a ramp-like time course, while recordings were made from local and interganglionic interneurones in the anterior ventral median part of the ganglion. Position, velocity and acceleration of the movements were varied independently and the interneurones were categorized on the basis of their responses to the changes in these parameters. Position-sensitivity was always accompanied by responses to velocity and/or acceleration. Velocity-sensitive responses were excitatory or inhibitory and were produced by elongation or relaxation, or by both. In some cases, velocity-sensitive neurones were also affected by position and acceleration. Acceleration responses were always excitatory and were often found in neurones that showed no effects of velocity or position. It is inferred that sensory input from different receptors in the ChO is processed by single interneurones. No interneurone in the recording region was found to be directly involved in the resistance reflex of the extensor tibiae motoneurones, elicited by stimulation of the ChO.

2006 ◽  
Vol 96 (6) ◽  
pp. 3532-3537 ◽  
Author(s):  
Turgay Akay ◽  
Ansgar Büschges

Reinforcement of movement is an important mechanism by which sensory feedback contributes to motor control for walking. We investigate how sensory signals from movement and load sensors interact in controlling the motor output of the stick insect femur–tibia (FT) joint. In stick insects, flexion signals from the femoral chordotonal organ (fCO) at the FT joint and load signals from the femoral campaniform sensilla (fCS) are known to individually reinforce stance-phase motor output of the FT joint by promoting flexor and inhibiting extensor motoneuron activity. We quantitatively compared the time course of inactivation in extensor tibiae motoneurons in response to selective stimulation of fCS and fCO. Stimulation of either sensor generates extensor activity in a qualitatively similar manner but with a significantly different time course and frequency of occurrence. Inactivation of extensor motoneurons arising from fCS stimulation was more reliable but more than threefold slower compared with the extensor inactivation in response to flexion signals from the fCO. In contrast, simultaneous stimulation of both sense organs produced inactivation in motoneurons with a time course typical for fCO stimulation alone, but with a frequency of occurrence characteristic for fCS stimulation. This increase in probability of occurrence was also accompanied by a delayed reactivation of the extensor motoneurons. Our results indicate for the first time that load signals from the leg affect the processing of movement-related feedback in controlling motor output.


1990 ◽  
Vol 151 (1) ◽  
pp. 133-160 ◽  
Author(s):  
ANSGAR BÜSCHGES

In the stick insect Carausius morosus (Phasmida) intracellular recordings were made from local nonspiking interneurones involved in the reflex activation of the extensor motoneurones of the femur-tibia joint during ramp-like stimulation of the transducer of this joint, the femoral chordotonal organ (ChO). The nonspiking interneurones in the femur-tibia control loop were characterized by their inputs from the ChO, their output properties onto the extensor motoneurones and their morphology. Eight different morphological and physiological types of nonspiking interneurones are described that are involved in the femur-tibia control loop. The results show that velocity signals from the ChO are the most important movement parameter processed by the nonspiking interneurones. Altering the membrane potential of these interneurones had marked effects on the reflex activation in the extensor motoneurones as the interneurones were able to increase or decrease the response of the participating motoneurones. The processing of information by the nonspiking pathways showed another remarkable aspect: nonspiking interneurones were found to process sensory information from the ChO onto extensor motoneurones in a way that seems not always to support the generation of the visible resistance reflexes in the extensor tibiae motoneurones in response to imposed flexion and extension movements of the joint. The present investigation demonstrated interneuronal pathways in the joint-control loop that show ‘assisting’ characteristics.


2005 ◽  
Vol 93 (3) ◽  
pp. 1255-1265 ◽  
Author(s):  
Björn Ch. Ludwar ◽  
Marie L. Göritz ◽  
Joachim Schmidt

Locomotion requires the coordination of movements across body segments, which in walking animals is expressed as gaits. We studied the underlying neural mechanisms of this coordination in a semi-intact walking preparation of the stick insect Carausius morosus. During walking of a single front leg on a treadmill, leg motoneuron (MN) activity tonically increased and became rhythmically modulated in the ipsilateral deafferented and deefferented mesothoracic (middle leg) ganglion. The pattern of modulation was correlated with the front leg cycle and specific for a given MN pool, although it was not consistent with functional leg movements for all MN pools. In an isolated preparation of a pair of ganglia, where one ganglion was made rhythmically active by application of pilocarpine, we found no evidence for coupling between segmental central pattern generators (CPGs) that could account for the modulation of MN activity observed in the semi-intact walking preparation. However, a third preparation provided evidence that signals from the front leg's femoral chordotonal organ (fCO) influenced activity of ipsilateral MNs in the adjacent mesothoracic ganglion. These intersegmental signals could be partially responsible for the observed MN activity modulation during front leg walking. While afferent signals from a single walking front leg modulate the activity of MNs in the adjacent segment, additional afferent signals, local or from contralateral or posterior legs, might be necessary to produce the functional motor pattern observed in freely walking animals.


2019 ◽  
Vol 122 (6) ◽  
pp. 2388-2413 ◽  
Author(s):  
Thomas Stolz ◽  
Max Diesner ◽  
Susanne Neupert ◽  
Martin E. Hess ◽  
Estefania Delgado-Betancourt ◽  
...  

Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.


1996 ◽  
Vol 199 (10) ◽  
pp. 2185-2198 ◽  
Author(s):  
U Bässler ◽  
W Stein

It is shown that the low-pass filter characteristics of the muscle­joint system of the femur­tibia joint of the stick insect Cuniculina impigra result from co-contraction of the extensor and flexor tibiae muscles. The most distal region of the extensor muscle, which contains a high percentage of slow muscle fibres, is involved in this co-contraction. This conclusion results from the following evidence. (1) Inertial and friction forces do not affect the characteristics of the low-pass filter of the muscle­joint system. (2) There is some co-contraction of the extensor and flexor muscles during sinusoidal stimulation of the femoral chordotonal organ at high stimulus frequencies. Both muscles generate tonic forces that increase with increasing stimulus frequency and also increase with time from the beginning of stimulation until a plateau is reached. (3) For the extensor muscle, this tonic force is produced by its most distal portion only. (4) Electrical stimulation of the common inhibitory motoneurone (CI1) reduces the tonic force generated in this most distal portion of the extensor muscle. Therefore, CI1 stimulation reduces the amplitude of tibial movement in response to sinusoidal stimulation of the femoral chordotonal organ at stimulus frequencies below 0.5 Hz (over this frequency range, the tibial movement amplitude is a function of the force amplitude produced by the whole extensor muscle and there is no co-contraction), but at chordotonal organ stimulus frequencies of 1 Hz and above, CI1 stimulation increases the tibial movement amplitude (in this case, movement amplitude is limited by the degree of co-contraction of the extensor and flexor muscles). With repeated chordotonal organ stimulation at higher stimulus frequencies, the tibial movement amplitude steadily decreases. This must be a consequence of increasing levels of co-contraction of the extensor and flexor muscles, since at low stimulus frequencies (no co-contraction) there is no reduction in movement amplitude during repeated stimulations. It is concluded that co-contraction of the extensor and flexor tibiae muscles prevents instability in the reflex loop in spite of the high gain necessary for the generation of catalepsy. Therefore, the mechanism described can be considered to be an adaptation to the ecological niche occupied by this animal. The contribution of the distal part of the extensor muscle to this system can be switched off by the CI1 during active movements.


2002 ◽  
Vol 88 (5) ◽  
pp. 2387-2398 ◽  
Author(s):  
Ralph A. DiCaprio ◽  
Harald Wolf ◽  
Ansgar Büschges

Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from ±5 to ±30°). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca2+ with Ba2+ in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca2+-dependent processes.


1985 ◽  
Vol 116 (1) ◽  
pp. 301-311 ◽  
Author(s):  
ULRICH BÄSSLER ◽  
EVA FOTH ◽  
GERHARD BREUTEL

On a slippery surface the forelegs of a decapitated stick insect walk forwards and the hindlegs, backwards. Animals with only forelegs but that are otherwise intact walk forwards, whereas animals with only hindlegs walk mostly backwards. Usually when intact animals start to walk, their hindlegs exert a rearwards thrust on the substrate, but occasionally the starting forces are directed forwards. A rampwise extension of the femoral chordotonal organ in the fixed foreleg of a walking animal first excites the flexor tibiae muscle (positive feedback). Towards the end of the ramp stimulus the activity of the flexor decreases, and the extensor tibiae motor neurones become strongly active. All experiments indicated that the inherent direction of movement of the metathorax is rearwards. In intact animals there must be a coordinating pathway from the prothorax to the metathorax that, together with the suboesophageal ganglion, induces the hindlegs to walk forwards.


1992 ◽  
Vol 173 (1) ◽  
pp. 91-108 ◽  
Author(s):  
R. Kittmann ◽  
J. Schmitz

The femoral chordotonal organ (fCO), one of the largest proprioceptive sense organs in the leg of the stick insect, is important for the control of the femur-tibia joint during standing and walking. It consists of a ventral scoloparium with about 80 sensory cells and a dorsal scoloparium with about 420 sensory cells. The present study examines the function of these scoloparia in the femur-tibia control loop. Both scoloparia were stimulated independently and the responses in the extensor tibiae motoneurones were recorded extra- and intracellularly. The ventral scoloparium, which is the smaller of the two, functions as the transducer of the femur-tibia control loop. Its sensory cells can generate the known resistance reflexes. The dorsal scoloparium serves no function in the femur-tibia control loop and its stimulation elicited no or only minor reactions in the extensor motoneurones. A comparison with other insect leg proprioceptors shows that a morphological subdivision of these organs often indicates a functional specialization.


1987 ◽  
Vol 133 (1) ◽  
pp. 137-156 ◽  
Author(s):  
G. WEILAND ◽  
U. T. KOCH

In the stick insect Carausius momsus, the role of the chordotonal organ was investigated using a new experimental arrangement which artificially closes the femur-tibia control system. The chordotonal organ was stimulated during voluntary movements by applying trapezoidal ramp stimuli in the closed-loop configuration. The results demonstrate that the feedback loop is used to control the end points of joint movement. In addition, it was found that the control system counteracts experimentally applied velocity changes imposed during the middle part of the movements. Acceleration-sensitive units are shown to contribute to the reaction. The results show that during active voluntary movements reflexes measured in the inactive animal are neither simply incorporated in a servo-system nor suppressed. Instead their characteristics are altered so that the voluntary movements are executed as intended by the animal. Thus reflexes cannot be considered as a fixed behavioural unit; rather their changing role must be analysed in the context of the behaviour studied.


1983 ◽  
Vol 105 (1) ◽  
pp. 127-145 ◽  
Author(s):  
ULRICH BÄSSLER ◽  
U. T. A. WEGNER

The denervated thoracic ventral nerve cord produces a motor output which is similar to that observed in the intact animal during irregular leg movements (seeking movements) or rocking, but not walking. When the nerves to some legs are left intact, and the animal walks on a wheel, the motor output in the protractor and retractor motor neurones of the denervated legs is modulated by the stepping frequency of the walking legs. The modulation is similar to that observed in the motor output to a not actually stepping leg of an intact walking animal. When only the crural nerve of one leg is left intact, stimulation of the trochanteral campaniform sensilli induces protractor and retractor motor output to that leg and the leg behind it. In this case the motor output to the ipsilateral leg is in phase. Stimulation of the femoral chordotonal organ influences activity in motor neurones of the extensor tibiae (FETi and SETi) but not those of the protractor and retractor coxae muscles. In a restrained leg of an intact animal stretching of the femoral chordotonal organ excites FETi and SETi as long as the other legs walk (as in a walking leg) and inhibits FETi and SETi (as in a seeking leg) when the other legs are unable to walk.


Sign in / Sign up

Export Citation Format

Share Document