scholarly journals The Mechanical Power Output of a Tettigoniid Wing Muscle During Singing and Flight

1985 ◽  
Vol 117 (1) ◽  
pp. 357-368 ◽  
Author(s):  
ROBERT K. JOSEPHSON

1. The mesothoracic wings of tettigoniid insects are used in song production and flight; the metathoracic wings in flight only. In Neoconocephalus triops the wing stroke frequency during flight is about 25 Hz; the frequency during singing about 100 Hz. 2. The twitch duration of mesothoracic, first tergocoxal (Tcxl) wing muscles is only about one-half the duration of the upstroke or downstroke portion of the wing cycle. During tethered flight the Tcxl muscles are activated on each cycle with short bursts of action potentials, each burst typically containing four action potentials. Activating the muscles with brief, tetanizing bursts increases the duration of muscle activity and the mechanical power output per wing cycle above that obtainable with single twitch contractions of the muscle. 3. The mechanical power output was determined for mesothoracic Tcxl muscles undergoing sinusoidal length change and stimulated phasically in the length cycle. At 25 Hz, the power at optimum muscle strain and optimum stimulus phase was 5 Wkg−1 at 30°C for muscles activated with single stimulus per cycle and about 33 Wkg−1 for muscles activated with bursts of stimuli in the normal pattern of flight. 4. The maximum power output at 100 Hz, the singing frequency, was 18 Wkg−1. This was achieved with a single stimulus per wing cycle. 5. From published values of oxygen consumption by tettigoniids during singing, it is concluded that the efficiency of conversion of metabolic to mechanical power during singing is about 3%.

2000 ◽  
Vol 203 (17) ◽  
pp. 2667-2689 ◽  
Author(s):  
R.K. Josephson ◽  
J.G. Malamud ◽  
D.R. Stokes

The basalar muscle of the beetle Cotinus mutabilis is a large, fibrillar flight muscle composed of approximately 90 fibers. The paired basalars together make up approximately one-third of the mass of the power muscles of flight. Changes in twitch force with changing stimulus intensity indicated that a basalar muscle is innervated by at least five excitatory axons and at least one inhibitory axon. The muscle is an asynchronous muscle; during normal oscillatory operation there is not a 1:1 relationship between muscle action potentials and contractions. During tethered flight, the wing-stroke frequency was approximately 80 Hz, and the action potential frequency in individual motor units was approximately 20 Hz. As in other asynchronous muscles that have been examined, the basalar is characterized by high passive tension, low tetanic force and long twitch duration. Mechanical power output from the basalar muscle during imposed, sinusoidal strain was measured by the work-loop technique. Work output varied with strain amplitude, strain frequency, the muscle length upon which the strain was superimposed, muscle temperature and stimulation frequency. When other variables were at optimal values, the optimal strain for work per cycle was approximately 5%, the optimal frequency for work per cycle approximately 50 Hz and the optimal frequency for mechanical power output 60–80 Hz. Optimal strain decreased with increasing cycle frequency and increased with muscle temperature. The curve relating work output and strain was narrow. At frequencies approximating those of flight, the width of the work versus strain curve, measured at half-maximal work, was 5% of the resting muscle length. The optimal muscle length for work output was shorter than that at which twitch and tetanic tension were maximal. Optimal muscle length decreased with increasing strain. The curve relating work output and muscle length, like that for work versus strain, was narrow, with a half-width of approximately 3 % at the normal flight frequency. Increasing the frequency with which the muscle was stimulated increased power output up to a plateau, reached at approximately 100 Hz stimulation frequency (at 35 degrees C). The low lift generated by animals during tethered flight is consistent with the low frequency of muscle action potentials in motor units of the wing muscles. The optimal oscillatory frequency for work per cycle increased with muscle temperature over the temperature range tested (25–40 degrees C). When cycle frequency was held constant, the work per cycle rose to an optimum with increasing temperature and then declined. We propose that there is a temperature optimum for work output because increasing temperature increases the shortening velocity of the muscle, which increases the rate of positive work output during shortening, but also decreases the durations of the stretch activation and shortening deactivation that underlie positive work output, the effect of temperature on shortening velocity being dominant at lower temperatures and the effect of temperature on the time course of activation and deactivation being dominant at higher temperatures. The average wing-stroke frequency during free flight was 94 Hz, and the thoracic temperature was 35 degrees C. The mechanical power output at the measured values of wing-stroke frequency and thoracic temperature during flight, and at optimal muscle length and strain, averaged 127 W kg(−1)muscle, with a maximum value of 200 W kg(−1). The power output from this asynchronous flight muscle was approximately twice that measured with similar techniques from synchronous flight muscle of insects, supporting the hypothesis that asynchronous operation has been favored by evolution in flight systems of different insect groups because it allows greater power output at the high contraction frequencies of flight.


1985 ◽  
Vol 116 (1) ◽  
pp. 271-289 ◽  
Author(s):  
TIMOTHY M. CASEY ◽  
MICHAEL L. MAY ◽  
KENNETH R. MORGAN

Mass-specific oxygen consumption of euglossine bees during free hove ringflight is inversely related to body mass, varying from 66 mlO2 g−1 h−1 in a 1.0 -g bee to 154 mlO2 g−1 h−1 in a 0.10 -g bee. Individuals of Eulaema and Eufreisea spp. have smaller wings and higher wing stroke frequency and energy metabolism at any given mass than bees of Euglossa spp. or Exaeretefrontalis. Calculated aero dynamic power requirements represent only a small fraction of the energy metabolism, and apparent flight efficiency aero dynamic power (= induced + profile power)/power input decreases as sizedeclines. If efficiency of flight muscle = 0.2, the mechanical power output of hovering bees varies inversely with body mass from about 480 to 1130 W kg−1 of muscle. These values are 1.9 to 4.5 times greater than previous predictions of maximum mechanical power output (Weis-Fogh & Alexander, 1977; see also Ellington, 1984c). Mass-specific energy expenditure per wing stroke is independent of body mass and essentially the same for all euglossines. Differences in energy metabolism among bees having similar body mass isprimarily related to differences in wing stroke frequency. Scaling of energy metabolism in relation to mass is generally similar to the relationship for sphingid moths despite the fact that bees have asynchronous flight musclewhereas moths have synchronous muscle.


1990 ◽  
Vol 149 (1) ◽  
pp. 61-78 ◽  
Author(s):  
R. D. STEVENSON ◽  
ROBERT K. JOSEPHSON

1. Mechanical work output was determined for an indirect flight muscle, the first dorsoventral, of the tobacco hawkmoth Manduca sexta. Work output per cycle was calculated from the area of force-position loops obtained during phasic electrical stimulation (1 stimulus cycle−1) and imposed sinusoidal length change. There was an optimal stimulus phase and an optimal length change (strain) that maximized work output (loop area) at constant cycle frequency and temperature. 2. When cycle frequency was increased at constant temperature, work output first increased and then decreased. It was always possible to find a frequency that maximized work output. There also always existed a higher frequency (termed the ‘optimal’ frequency in this paper) that maximized the mechanical power output, which is the product of the cycle frequency (s−1) and the work per cycle (J). 3. As temperature increased from 20 to 40°C, the mean maximum power output increased from about 20 to about 90 W kg−1 of muscle (Q10=2.09). There was a corresponding increase in optimal frequency from 12.7 to 28.3 Hz, in the work per cycle at optimal frequency from 1.6 to 3.2Jkg−1 muscle and in mean optimal strain from 5.9 to 7.9%. 4. Two electrical stimuli per cycle cannot increase power output at flight frequencies, but if frequency is reduced then power output can be increased with multiple stimulation. 5. Comparison of mechanical power output from muscle and published values of energy expenditure during free hovering flight of Manduca suggests that mechanical efficiency is about 10%. 6. In the tobacco hawkmoth there is a good correspondence between, on the one hand, the conditions of temperature (35–40°C) and cycle frequency (28–32 Hz) that produce maximal mechanical power output in the muscle preparation and, on the other hand, the thoracic temperature (35–42°C) and wing beat frequency (24–32 Hz) observed during hovering flight.


1985 ◽  
Vol 114 (1) ◽  
pp. 493-512 ◽  
Author(s):  
Robert K. Josephson

1. The mechanical power output of a synchronous insect muscle was determined by measuring tension as the muscle was subjected to sinusoidal length change and stimuli which occurred at selected phases of the length cycle. The area of the loop formed by plotting muscle tension against length over a full cycle is the work done on that cycle; the work done times the cycle frequency is the mechanical power output. The muscle was a flight muscle of the tettigoniid Neoconocephalus triops. The measurements were made at the normal wing-stroke frequency for flight (25 Hz) and operating temperature (30°C). 2. The power output with a single stimulus per cycle, optimal excursion amplitude, and optimal stimulus phase was 1.52 J kg−1 cycle−1 or 37W kg−1. The maximum power output occurs at a phase such that the onset of the twitch coincides with the onset of the shortening half of the length cycle. The optimum excursion amplitude was 5.5% rest length; with greater excursion, work output declined because of decreasing muscle force associated with the more rapid shortening velocity. 3. Multiple stimulation per cycle increases the power output above that available with twitch contractions. In this muscle, the maximum mechanical power output at 25 Hz was 76 W kg−1 which was achieved with three stimuli per cycle separated by 4-ms intervals and an excursion amplitude of 6.0% rest length. 4. The maximum work output during the shortening of an isotonic twitch contraction was about the same as the work done over a full sinusoidal shortening-lengthening cycle with a single stimulus per cycle and optimum excursion amplitude and phase.


1994 ◽  
Vol 197 (1) ◽  
pp. 143-164
Author(s):  
D A Syme

Mechanical power and oxygen consumption (VO2) were measured simultaneously from isolated segments of trabecular muscle from the frog (Rana pipiens) ventricle. Power was measured using the work-loop technique, in which bundles of trabeculae were subjected to cyclic, sinusoidal length change and phasic stimulation. VO2 was measured using a polarographic O2 electrode. Both mechanical power and VO2 increased with increasing cycle frequency (0.4-0.9 Hz), with increasing muscle length and with increasing strain (= shortening, range 0-25% of resting length). Net efficiency, defined as the ratio of mechanical power output to the energy equivalent of the increase in VO2 above resting level, was independent of cycle frequency and increased from 8.1 to 13.0% with increasing muscle length, and from 0 to 13% with increasing strain, in the ranges examined. Delta efficiency, defined as the slope of the line relating mechanical power output to the energy equivalent of VO2, was 24-43%, similar to that reported from studies using intact hearts. The cost of increasing power output was greater if power was increased by increasing cycle frequency or muscle length than if it was increased by increasing strain. The results suggest that the observation that pressure-loading is more costly than volume-loading is inherent to these muscle fibres and that frog cardiac muscle is, if anything, less efficient than most skeletal muscles studied thus far.


Author(s):  
Chongjing Cao ◽  
Lijin Chen ◽  
Wenke Duan ◽  
Thomas L. Hill ◽  
Bo Li ◽  
...  

Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 151 ◽  
Author(s):  
Takafumi Kubo ◽  
Kuniaki Hirayama ◽  
Nobuhiro Nakamura ◽  
Mitsuru Higuchi

The aim of this study was to investigate whether accommodating elastic bands with barbell back squats (BSQ) increase muscular force during the deceleration subphase. Ten healthy men (mean ± standard deviation: Age: 23 ± 2 years; height: 170.5 ± 3.7 cm; mass: 66.7 ± 5.4 kg; and BSQ one repetition maximum (RM): 105 ± 23.1 kg; BSQ 1RM/body mass: 1.6 ± 0.3) were recruited for this study. The subjects performed band-resisted parallel BSQ (accommodating elastic bands each sides of barbell) with five band conditions in random order. The duration of the deceleration subphase, mean mechanical power, and the force and velocity during the acceleration and deceleration subphases were calculated. BSQ with elastic bands elicited greater mechanical power output, velocity, and force during the deceleration subphase, in contrast to that elicited with traditional free weight (p < 0.05). BSQ with elastic bands also elicited greater mechanical power output and velocity during the acceleration subphase. However, the force output during the acceleration subphase using an elastic band was lesser than that using a traditional free weight (p < 0.05). This study suggests that BSQ with elastic band elicit greater power output during the acceleration and deceleration subphases.


Genetics ◽  
1981 ◽  
Vol 98 (3) ◽  
pp. 549-564
Author(s):  
James W Curtsinger ◽  
Cathy C Laurie-Ahlberg

ABSTRACT The mechanical power imparted to the wings during tethered flight of Drosophila melanogaster is estimated from wing-beat frequency, wing-stroke amplitude and various aspects of wing morphology by applying the steady-state aerodynamics model of insect flight developed by Weis-Fogh (1972, 1973). Wing-beat frequency, the major determinant of power output, is highly correlated with the rate of oxygen consumption. Estimates of power generated during flight should closely reflect rates of ATP production in the flight muscles, since flies do not acquire an oxygen debt or accumulate ATP during flight. In an experiment using 21 chromosome 2 substitution lines, lines were a significant source of variation for all flight parameters measured. Broadsense heritabilities ranged from 0.16 for wing-stroke amplitude to 0.44 for inertial power. The variation among lines is not explained by variation in total body size (i.e., live weight). Line differences in flight parameters are robust with respect to age, ambient temperature and duration of flight. These results indicate that characterization of the power output during tethered flight will provide a sensitive experimental system for detecting the physiological effects of variation in the structure or quantity of the enzymes involved in flight metabolism.


2010 ◽  
Vol 628 (1-3) ◽  
pp. 116-127 ◽  
Author(s):  
Diethart Schmid ◽  
Dawid L. Staudacher ◽  
Christian A. Plass ◽  
Hans G. Loew ◽  
Eva Fritz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document