The physiology of wandering behaviour in Manduca sexta. III. Organization of wandering behaviour in the larval nervous system

1986 ◽  
Vol 121 (1) ◽  
pp. 115-132 ◽  
Author(s):  
O. S. Dominick ◽  
J. W. Truman

The locomotor patterns typical of wandering behaviour were studied electromyographically in abdominal segments of freely moving larvae of Manduca sexta. Crawling locomotion consisted of stereotyped, anteriorly-directed, peristaltic waves of intersegmental muscle contraction. During burrowing the intersegmental muscles of all abdominal segments contracted simultaneously for several consecutive cycles and then performed a single bout of the crawling pattern. Sensory inputs determined which motor patterns were used and how they were modified. Local sensory inputs could modify patterns in the specific segments affected. The neural circuitry that was required to generate the peristaltic and bracing patterns was repeated among the thoracic and abdominal ganglia, and normally wa activated by the suboesophageal ganglion (SEG) and brain. In the absence of connections with the SEG and brain the segmental motor pattern generators could be activated by strong sensory stimuli. When the thoracic and abdominal segments lacked connections with the SEG, spontaneous movements were infrequent prior to wandering, but increased markedly at wandering or following 20-hydroxyecdysone (20-HE) infusion. Prior to wandering the SEG drives spontaneous locomotion in debrained larvae, but this function disappears in wandering larvae, or following 20-HE infusion. Prior to wandering the brain exerted a net inhibitory influence on locomotion. Removal of the medial region of the brain abolished this inhibition, resulting in strong, continuous locomotion which was driven by the lateral region of the brain. This lateral excitatory function of the brain was not altered by 20-HE infusion prior to wandering, nor did it change with the appearance of wandering behaviour. We conclude that the locomotor patterns used during wandering are produced by pattern generators in the segmental ganglia and are modified by sensory information. The circuitry responsible for activating these motor pattern generators is associated with the SEG, and is under the control of the brain. The brain exerts a net inhibitory influence prior to wandering, which becomes excitatory during wandering. Ecdysteroids appear to alter locomotor function by acting at various levels including the segmental ganglia, the SEG and the brain. A model is advanced describing this effect.

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 35-35 ◽  
Author(s):  
M T Wallace

Multisensory integration in the superior colliculus (SC) of the cat requires a protracted postnatal developmental time course. Kittens 3 – 135 days postnatal (dpn) were examined and the first neuron capable of responding to two different sensory inputs (auditory and somatosensory) was not seen until 12 dpn. Visually responsive multisensory neurons were not encountered until 20 dpn. These early multisensory neurons responded weakly to sensory stimuli, had long response latencies, large receptive fields, and poorly developed response selectivities. Most striking, however, was their inability to integrate cross-modality cues in order to produce the significant response enhancement or depression characteristic of these neurons in adults. The incidence of multisensory neurons increased gradually over the next 10 – 12 weeks. During this period, sensory responses became more robust, latencies shortened, receptive fields decreased in size, and unimodal selectivities matured. The first neurons capable of cross-modality integration were seen at 28 dpn. For the following two months, the incidence of such integrative neurons rose gradually until adult-like values were achieved. Surprisingly, however, as soon as a multisensory neuron exhibited this capacity, most of its integrative features were indistinguishable from those in adults. Given what is known about the requirements for multisensory integration in adult animals, this observation suggests that the appearance of multisensory integration reflects the onset of functional corticotectal inputs.


2015 ◽  
Vol 114 (5) ◽  
pp. 2564-2577 ◽  
Author(s):  
Stefan R. Pulver ◽  
Timothy G. Bayley ◽  
Adam L. Taylor ◽  
Jimena Berni ◽  
Michael Bate ◽  
...  

We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques.


2019 ◽  
Author(s):  
Alexandra Libby ◽  
Timothy J. Buschman

AbstractSensory stimuli arrive in a continuous stream. By learning statistical regularities in the sequence of stimuli, the brain can predict future stimuli (Xu et al. 2012; Gavornik and Bear 2014; Maniscalco et al. 2018; J. Fiser and Aslin 2002). Such learning requires associating immediate sensory information with the memory of recently encountered stimuli (Ostojic and Fusi 2013; Kiyonaga et al. 2017). However, new sensory information can also interfere with short-term memories (Parthasarathy et al. 2017). How the brain prevents such interference is unknown. Here, we show that sensory representations rotate in neural space over time, to form an independent memory representation, thus reducing interference with future sensory inputs. We used an implicit learning paradigm in mice to study how statistical regularities in a sequence of stimuli are learned and represented in primary auditory cortex. Mice experienced both common sequences of stimuli (e.g. ABCD) and uncommon sequences (e.g. XYCD). Over four days of learning, the neural population representation of commonly associated stimuli (e.g. A and C) converged. This facilitated the prediction of upcoming stimuli, but also led unexpected sensory inputs to overwrite the sensory representation of previous stimuli (postdiction). Surprisingly, we found the memory of previous stimuli persisted in a second, orthogonal dimension. Unsupervised clustering of functional cell types revealed that the emergence of this second memory dimension is supported by two separate types of neurons; a ‘stable’ population that maintained its selectivity throughout the sequence and a ‘switching’ population that dynamically inverted its selectivity. This combination of sustained and dynamic representations produces a rotation of the encoding dimension in the neural population. This rotational dynamic may be a general principle, by which the cortex protects memories of prior events from interference by incoming stimuli.


2001 ◽  
Vol 280 (6) ◽  
pp. G1055-G1060 ◽  
Author(s):  
Pamela J. Hornby

In the last decade, there has been a dramatic increase in academic and pharmaceutical interest in central integration of vago-vagal reflexes controlling the gastrointestinal tract. Associated with this, there have been substantial efforts to determine the receptor-mediated events in the dorsal vagal complex that underlie the physiological responses to distension or variations in the composition of the gut contents. Strong evidence supports the idea that glutamate is a transmitter in afferent vagal fibers conveying information from the gut to the brain, and the implications of this are discussed in this themes article. Furthermore, both ionotropic and metabotropic glutamate receptors mediate pre- and postsynaptic control of glutamate transmission related to several reflexes, including swallowing motor pattern generation, gastric accommodation, and emesis. The emphasis of this themes article is on the potential therapeutic benefits afforded by modulation of these receptors at the site of the dorsal vagal complex.


2012 ◽  
Vol 108 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Yann Thibaudier ◽  
Marie-France Hurteau

Propriospinal pathways are thought to be critical for quadrupedal coordination by coupling cervical and lumbar central pattern generators (CPGs). However, the mechanisms involved in relaying information between girdles remain largely unexplored. Using an in vitro spinal cord preparation in neonatal rats, Juvin and colleagues ( Juvin et al. 2012 ) have recently shown sensory inputs from the hindlimbs have greater influence on forelimb CPGs than forelimb sensory inputs on hindlimb CPGs, in other words, a bottom-up control system. However, results from decerebrate cats suggest a top-down control system. It may be that both bottom-up and top-down control systems exist and that the dominance of one over the other is task or context dependent. As such, the role of sensory inputs in controlling quadrupedal coordination before and after injury requires further investigation.


1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.


1999 ◽  
Vol 202 (2) ◽  
pp. 103-113 ◽  
Author(s):  
R.M. Johnston ◽  
C. Consoulas ◽  
H. Pflüger ◽  
R.B. Levine

The unpaired median neurons are common to the segmental ganglia of many insects. Although some of the functional consequences of their activation, among them the release of octopamine to modulate muscle contraction, have been described, less is understood about how and when these neurons are recruited during movement. The present study demonstrates that peripherally projecting unpaired median neurons in the abdominal and thoracic ganglia of the larval tobacco hornworm Manduca sexta are recruited rhythmically during the fictive crawling motor activity that is produced by the isolated central nervous system in response to pilocarpine. Regardless of the muscles to which they project, the efferent unpaired median neurons in all segmental ganglia are depolarized together during the phase of the crawling cycle when the thoracic leg levator motoneurons are active. During fictive crawling, therefore, the unpaired median neurons are not necessarily active in synchrony with the muscles to which they project. The rhythmical synaptic drive of the efferent unpaired median neurons is derived, at least in part, from a source within the subesophageal ganglion, even when the motor pattern is evoked by exposing only the more posterior ganglia to pilocarpine. In pairwise intracellular recordings from unpaired median neurons in different ganglia, prominent excitatory postsynaptic potentials, which occur with an anterior-to-posterior delay in both neurons, are seen to underlie the rhythmic depolarizations. One model consistent with these findings is that one or more neurons within the subesophageal ganglion, which project posteriorly to the segmental ganglia and ordinarily provide unpatterned synaptic inputs to all efferent unpaired median neurons, become rhythmically active during fictive crawling in response to ascending information from the segmental pattern-generating network.


2001 ◽  
Vol 204 (2) ◽  
pp. 305-314 ◽  
Author(s):  
A. Nighorn ◽  
P.J. Simpson ◽  
D.B. Morton

Guanylyl cyclases are usually characterized as being either soluble (sGCs) or receptor (rGCs). We have recently cloned a novel guanylyl cyclase, MsGC-I, from the developing nervous system of the hawkmoth Manduca sexta that cannot be classified as either an sGC or an rGC. MsGC-I shows highest sequence identity with receptor guanylyl cyclases throughout its catalytic and dimerization domains, but does not contain the ligand-binding, transmembrane or kinase-like domains characteristic of receptor guanylyl cyclases. In addition, MsGC-I contains a C-terminal extension of 149 amino acid residues. In this paper, we report the expression of MsGC-I in the adult. Northern blots show that it is expressed preferentially in the nervous system, with high levels in the pharate adult brain and antennae. In the antennae, immunohistochemical analyses show that it is expressed in the cell bodies and dendrites, but not axons, of olfactory receptor neurons. In the brain, it is expressed in a variety of sensory neuropils including the antennal and optic lobes. It is also expressed in structures involved in higher-order processing including the mushroom bodies and central complex. This complicated expression pattern suggests that this novel guanylyl cyclase plays an important role in mediating cyclic GMP levels in the nervous system of Manduca sexta.


Sign in / Sign up

Export Citation Format

Share Document