Physiological effects of two FMRFamide-related peptides from the crayfish Procambarus clarkii

1995 ◽  
Vol 198 (1) ◽  
pp. 109-116
Author(s):  
M Skerrett ◽  
A Peaire ◽  
P Quigley ◽  
A Mercier

The present study examined the effects of two recently identified neuropeptides on crayfish hearts and on neuromuscular junctions of the crayfish deep abdominal extensor muscles. The two peptides, referred to as NF1 (Asn-Arg-Asn-Phe-Leu-Arg-Phe-NH2) and DF2 (Asp-Arg-Asn-Phe-Leu-Arg-Phe-NH2), increased the rate and amplitude of spontaneous cardiac contractions and increased the amplitude of excitatory junctional potentials (EJPs) in the deep extensors. Both effects were dose-dependent, but threshold and EC50 values for the cardiac effects were at least 10 times lower than for the deep extensor effects. The heart responded equally well to three sequential applications of peptide in any given preparation, but the responses of the deep extensors appeared to decline with successive peptide applications. The results support the hypothesis that these two neuropeptides act as neurohormones to modulate the cardiac and neuromuscular systems in crayfish. Quantal synaptic current recordings from the deep extensor muscles indicate that both peptides increase the number of quanta of transmitter released from synaptic terminals. Neither peptide elicited a measurable change in the size of quantal synaptic currents. NF1 caused a small increase in muscle cell input resistance, while DF2 did not alter input resistance. These data suggest that DF2 increases EJP amplitudes primarily by increasing transmitter release, while the increase elicited by NF1 appears to involve presynaptic and postsynaptic mechanisms.

1987 ◽  
Vol 65 (1) ◽  
pp. 105-108 ◽  
Author(s):  
J. M. Wojtowicz ◽  
I. Parnas ◽  
H. Parnas ◽  
H. L. Atwood

Latency of release of individual quanta of transmitter was studied at neuromuscular junctions of a crayfish (Procambarus clarkii). Postsynaptic quantal currents were recorded at individual motor nerve endings with a macropatch electrode while the subterminal axon branch was depolarized by current passed through an intracellular microelectrode. For depolarizing currents of moderate size, the latency of transmitter release did not change when the duration of the depolarizing current was altered. Previous studies in which a contrary result was obtained may have been compromised by artefacts or by the sampling methods employed. The present results do not support the hypothesis of a depolarization-induced "repressor" of quantal release.


1981 ◽  
Vol 90 (1) ◽  
pp. 85-100
Author(s):  
CHARLES H. PAGE

Postural extensions of the abdomen of the crayfish, Procambarus clarkii, could be evoked by mechanical stimulation of a single thoracic leg. Movement of a single leg joint was sufficient to initiate an extension response. Vigorous abdominal extensions were initiated either by depression of the whole leg (WLD) or by flexion of the mero-carpal joint (MCF). Weaker extension responses were obtained by depression of the thoracic-coxal and coxo-basal joints. Similar stimulation of the chelipeds did not elicit an abdominal extension response. Single-frame analysis of motion pictures of crayfish responding to WLD or MCF stimulation of a 2nd thoracic leg showed that the responses evoked by the two different stimulus situations were nearly identical. They differed principally in the responses of the leg located contralateral to the stimulated leg. Movements of most of the cephalic, thoracic and abdominal appendages accompanied the abdominal extension response. Only the eyes remained stationary throughout the response. The mean values of the latencies for the initiation of appendage movement ranged from 125 to 204 ma; abdominal movement had a mean latency of about 220 ms. The abdominal extension reflex resulted from the activity of the tonic superficial extensor muscles. The deep phasic extensor muscles were silent during the response. The mean latencies for the initiation of superficial extensor muscle activity by WLD and MCF stimulation were 53·7 and 50·0 ms respectively.


1981 ◽  
Vol 77 (5) ◽  
pp. 503-529 ◽  
Author(s):  
J E Zengel ◽  
K L Magleby

Miniature endplate potentials (MEPPs) were recorded from frog sartorious neuromuscular junctions under conditions of reduced quantal contents to study the effect of repetitive nerve stimulation on asynchronous (tonic) quantal transmitter release. MEPP frequency increased during repetitive stimulation and then decayed back to the control level after the conditioning trains. The decay of the increased MEPP frequency after 100-to 200-impulse conditioning trains can be described by four components that decayed exponentially with time constants of about 50 ms, 500 ms, 7 s, and 80 s. These time constants are similar to those for the decay of stimulation-induced changes in synchronous (phasic) transmitter release, as measured by endplate potential (EPP) amplitudes, corresponding, respectively, to the first and second components of facilitation, augmentation, and potentiation. The addition of small amounts of Ca2+ or Ba2+ to the Ca2+-containing bathing solution, or the replacement of Ca2+ with Sr2+, led to a greater increase in the stimulation-induced increases in MEPP frequency. The Sr-induced increase in MEPP frequency was associated with an increase in the second component of facilitation of MEPP frequency; the Ba-induced increase with an increase in augmentation. These effects of Sr2+ and Ba2+ on stimulation-induced changes in MEPP frequency are similar to the effects of these ions on stimulation-induced changes in EPP amplitude. These ionic similarities and the similar kinetics of decay suggest that stimulation induced changes in MEPP frequency and EPP amplitude have some similar underlying mechanisms. Calculations are presented which show that a fourth power residual calcium model for stimulation-induced changes in transmitter release cannot readily account for the observation that stimulation-induced changes in MEPP frequency and EPP amplitude have similar time-courses.


1996 ◽  
Vol 76 (6) ◽  
pp. 4031-4039 ◽  
Author(s):  
D. Parker ◽  
S. Grillner

1. Tachykinin-like immunoreactivity is found in the dorsal roots, dorsal horn, and dorsal column of the lamprey. The effect of tachykinins on sensory processing was examined by recording intracellularly from primary sensory dorsal cells and second-order spinobulbar giant interneurons. Modulation of synaptic transmission was examined by making paired recordings from dorsal cells and giant interneurons, or by eliciting compound depolarizations in the giant interneurons by stimulating the dorsal root or dorsal column. 2. Bath application of tachykinins depolarized the dorsal cells. This effect was mimicked by stimulation of the dorsal root, suggesting that dorsal root afferents may be a source of endogenous tachykinin input to the spinal cord. The depolarization was reduced by removal of sodium or calcium from the Ringer, or when potassium conductances were blocked, and was not associated with a measurable change in input resistance. Dorsal root stimulation also caused a depolarization in the dorsal cells, and this effect and that of bath-applied substance P, was blocked by the tachykinin antagonist spantide. 3. The tachykinin substance P could reduce inward and outward rectification in the dorsal cells, the effect on outward rectification only being seen when potassium conductances were blocked by tetraethylammonium (TEA). 4. Substance P increased the excitability of the dorsal cells and giant interneurons, shown by the increased spiking in response to depolarizing current pulses. The increased excitability was blocked by the tachykinin antagonist spantide. 5. Substance P modulated the dorsal cell action potential, by increasing the spike duration and reducing the amplitude of the afterhyperpolarization. The spike amplitude was not consistently affected. 6. Stimulation of the dorsal column resulted in either depolarizing or hyperpolarizing potentials in the giant interneurons. The amplitude of the depolarization was increased by substance P, whereas the amplitude of the hyperpolarization was reduced. These effects occurred independently of a measurable change in postsynaptic input resistance, suggesting that the modulation occurred presynaptically. Paired recordings from dorsal cells and giant interneurons failed to reveal an effect of substance P on dorsal cell-evoked excitatory postsynaptic potentials (EPSPs), suggesting that the potentiation of the dorsal column-evoked depolarization was due to an effect on other axons in the dorsal column. Dorsal root-evoked potentials could also be increased in the presence of substance P, although this effect was less consistent than the effect on dorsal column stimulation. 7. These results suggest that tachykinins modulate sensory input to the lamprey spinal cord by increasing the excitability of primary afferents and second-order giant interneurons, and also by modulating synaptic transmission. Tachykinins may result in potentiation of local spinal reflexes and also modulation of descending reticulospinal inputs to the spinal locomotor network as a result of potentiation of spinobulbar inputs.


1998 ◽  
Vol 79 (2) ◽  
pp. 1127-1131 ◽  
Author(s):  
Rainer W. Friedrich ◽  
G. F. Molnar ◽  
Michael Schiebe ◽  
A. Joffre Mercier

Friedrich, Rainer W., G. F. Molnar, Michael Schiebe, and A. Joffre Mercier. Protein kinase C is required for long-lasting synaptic enhancement by the neuropeptide DRNFLRFamide in crayfish. J. Neurophysiol. 79: 1127–1131, 1998. The FMRFamide-related neuropeptide AspArgAsnPheLeuArgPhe-NH2 (DRNFLRFamide, DF2) induces a long-lasting enhancement of synaptic transmission at neuromuscular junctions on the crayfish deep abdominal extensor muscles. Here we investigated the function of protein kinase C (PKC) in this effect because PKC has been implied in the control of long-term synaptic modulation in other systems. The general kinase antagonist staurosporine reduced both the initial increase in excitatory postsynaptic potential (EPSP) amplitude and the duration of synaptic enhancement. Unlike staurosporine, the selective PKC inhibitors, chelerythrine and bisindolylmaleimide, augmented the initial EPSP increase. However, like staurosporine, they also reduced the duration of synaptic enhancement. The PKC activator, phorbol-12-myristate 13-acetate, induced a long-lasting synaptic enhancement that was blocked by chelerythrine. These results show that synaptic enhancement by DF2 is mediated by different intracellular signaling systems that act in temporal sequence. The initial increase in EPSP amplitudes is negatively regulated by PKC and involves another, staurosporine-sensitive, kinase; whereas, the maintenance of synaptic enhancement requires PKC.


1971 ◽  
Vol 178 (1053) ◽  
pp. 407-415 ◽  

When frog muscles are exposed for several hours to a solution of isotonic calcium chloride, the secretory response of the motor nerve terminals to imposed depolarization ultimately fails and the rate of spontaneous release of acetylcholine also declines towards zero. The failure of depolarization-evoked transmitter release is irreversible while spontaneous release reappears, though in highly abnormal fashion, when the muscle is returned to a normal ionic medium. Examination of motor end-plates, during various stages of calcium treatment, shows that there is gradual intra-axonal agglutination of synaptic vesicles which is only very incompletely reversible. This effect is presumably the consequence of gradual entry and intracellular accumulation of calcium ions. Analogous treatment with isotonic magnesium, while resulting in immediate loss of evoked transmitter release, does not lead to progressive agglutination of synaptic vesicles, nor to irreversible impairment of the secretory response of the nerve terminal. The possible relations between structural and functional changes during calcium and magnesium treatment are discussed.


Sign in / Sign up

Export Citation Format

Share Document