Effect of pharmacological blockade on cardiovascular responses to voluntary and forced diving in muskrats.

1995 ◽  
Vol 198 (11) ◽  
pp. 2307-2315 ◽  
Author(s):  
P E Signore ◽  
D R Jones

Neural control of free and forced diving bradycardia and peripheral resistance was studied in the muskrat (Ondatra zibethicus) by means of acute pharmacological blockade with the muscarinic blocker atropine, the alpha-adrenergic blocker phentolamine and the beta-adrenergic blockers nadolol and propranolol. Saline injection was used as a control. Heart rate in control animals increased before voluntary dives and dropped markedly as soon as the animals submerged. Heart rate started increasing towards the end of voluntary dives and reached pre-dive values within the first 5 s of recovery. Pre-dive and post-dive tachycardia were reduced in beta-blocked animals, emphasizing the role of the sympathetic system during the preparatory and recovery periods of voluntary dives. Diving bradycardia and the acceleration in heart rate before surfacing were abolished by atropine and unaffected by nadolol, demonstrating the importance of vagal efferent activity during diving. The results after blockade with nadolol suggest that there is an accentuated antagonism between the two branches of the autonomic nervous system during diving, so that parasympathetic influences on the heart predominate. Propranolol-treated muskrats had a higher diving heart rate than saline- and nadolol-treated animals, which may be due to a sedative effect caused by propranolol crossing the blood-brain barrier, a blockade of central catecholaminergic pathways or a peripheral neural effect, due to the anaesthetic properties of propranolol. Phentolamine did not affect diving bradycardia, indicating that diving bradycardia occurs independently of peripheral vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)

1986 ◽  
Vol 251 (6) ◽  
pp. H1316-H1323 ◽  
Author(s):  
B. R. Walker

Previous experiments have demonstrated that hypoxia stimulates the release of arginine vasopressin in conscious animals including the rat. The present study was designed to test whether AVP may exert a vasoconstrictor influence during hypoxia at varying levels of CO2. Systemic hemodynamics were assessed in conscious rats for 30 min under hypocapnic hypoxic, isocapnic hypoxic, hypercapnic hypoxic, and room air conditions. Progressive effects on heart rate (HR), cardiac output (CO), and total peripheral resistance (TPR) were observed with varying CO2 under hypoxic conditions. Hypocapnic hypoxia [arterial PO2 (PaO2) = 32 Torr; arterial PCO2 (PaCO2) = 22 Torr] caused HR and CO to rise and TPR to fall. Isocapnic hypoxia (PaO2 = 36 Torr; PaCO2 = 35 Torr) was associated with no significant changes in HR and CO or TPR, whereas hypercapnic hypoxia (PaO2 = 35 Torr; PaCO2 = 51 Torr) caused HR and CO to fall and TPR to rise. Room air time control experiments were associated with no change in measured hemodynamic variables. To determine the possible role of circulating AVP on these cardiovascular responses, additional experiments were performed where the specific V1-vasopressinergic antagonist d(CH2)5Tyr(Me)AVP (10 micrograms/kg iv) was administered at the midpoint of hypoxic exposure. Antagonist administration had no effect on hypocapnic hypoxic animals or animals breathing room air; however, blood pressure and TPR were significantly reduced by d(CH2)5Tyr(Me)AVP in both isocapnic and hypercapnic hypoxic animals. The heart rate response to hypoxia at the various CO2 levels was unaffected; however, cardiac output and stroke volume were increased after V1-antagonism in the isocapnic and hypercapnic hypoxic animals.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 205 (23) ◽  
pp. 3757-3765 ◽  
Author(s):  
Nicole M. Elliott ◽  
Russel D. Andrews ◽  
David R. Jones

SUMMARYWhile diving, harbour seals (Phoca vitulina) manage their oxygen stores through cardiovascular adjustments, including bradycardia, a concurrent reduction in cardiac output, and peripheral vasoconstriction. At the surface,post-dive tachycardia facilitates rapid reloading of oxygen stores. Although harbour seals can tolerate >20 min of submergence, the majority of their natural dives are only 2-6 min and are usually followed by surface intervals that are <1 min, so they spend approximately 80% of their time submerged. Given that harbour seals meet their ecological needs through repetitive short aerobic dives, we were interested in the functional role, if any, of the dive response during these short dives. During voluntary diving in an 11 m deep tank, the cardiovascular responses to submergence of five harbour seals were manipulated using specific pharmacological antagonists, and the effects on diving behaviour were observed. Effects of pharmacological blockade on heart rate were also examined to assess the autonomic control of heart rate during voluntary diving. Heart rate was recorded using subcutaneous electrodes and data loggers, while diving behaviour was monitored using a video camera. The muscarinic blocker methoctramine blocked diving bradycardia, theα-adrenergic blocker prazosin blocked diving vasoconstriction, and theβ-adrenergic blocker metoprolol blocked post-dive tachycardia. Heart-rate analysis indicated that diving bradycardia is primarily modulated by the vagus, while post-dive tachycardia results from parasympathetic withdrawal as well as increased sympathetic stimulation of the heart. None of the pharmacological blockers had any effect on average dive or surface interval duration. Seals maintained a high percentage of time spent diving in all treatments. Thus, harbour seals do not appear to need the dive response during short dives in order to maintain an efficient dive strategy.


1980 ◽  
Vol 239 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

To investigate the role of the paraventricular (PAH) and supraoptic (SON) nuclei in regulation of the cardiovascular system experiments were done in 26 cats anesthetized with alpha-chloralose, paralyzed, and artificially ventilated. Electrical stimulation of histologically verified sites in the region of the PAH and SON elicited increases in arterial pressure in bilaterally vagotomized animals and increases in heart rate both in spinal (C2) animals and in animals bilaterally vagotomized, In addition, stimulation of either the PAH or SON inhibited the reflex vagal bradycardia elicited by stimulation of the carotid sinus nerve (CSN) and bilateral lesions of these areas increased the magnitude of the response. On the other hand, stimulation and lesions of these hypothalamic regions did not alter the magnitude of the cardiovascular responses to stimulation of the aortic depressor nerve. These results demonstrate that stimulation of the PAH and SON elicit cardiovascular responses due to reciprocal changes in activity of the parasympathetic and sympathetic nervous systems and that these structures maintain a tonic inhibitory influence on the heart rate component of the CSN reflex.


2014 ◽  
Vol 116 (11) ◽  
pp. 1371-1381 ◽  
Author(s):  
James P. Mendoza ◽  
Rachael J. Passafaro ◽  
Santhosh M. Baby ◽  
Alex P. Young ◽  
James N. Bates ◽  
...  

Exposure to hypoxia elicits changes in mean arterial blood pressure (MAP), heart rate, and frequency of breathing (fr). The objective of this study was to determine the role of nitric oxide (NO) in the cardiovascular and ventilatory responses elicited by brief exposures to hypoxia in isoflurane-anesthetized rats. The rats were instrumented to record MAP, heart rate, and fr and then exposed to 90 s episodes of hypoxia (10% O2, 90% N2) before and after injection of vehicle, the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME), or the inactive enantiomer d-NAME (both at 50 μmol/kg iv). Each episode of hypoxia elicited a decrease in MAP, bidirectional changes in heart rate (initial increase and then a decrease), and an increase in fr. These responses were similar before and after injection of vehicle or d-NAME. In contrast, the hypoxia-induced decreases in MAP were attenuated after administration of l-NAME. The initial increases in heart rate during hypoxia were amplified whereas the subsequent decreases in heart rate were attenuated in l-NAME-treated rats. Finally, the hypoxia-induced increases in fr were virtually identical before and after administration of l-NAME. These findings suggest that NO factors play a vital role in the expression of the cardiovascular but not the ventilatory responses elicited by brief episodes of hypoxia in isoflurane-anesthetized rats. Based on existing evidence that NO factors play a vital role in carotid body and central responses to hypoxia in conscious rats, our findings raise the novel possibility that isoflurane blunts this NO-dependent signaling.


1963 ◽  
Vol 205 (5) ◽  
pp. 1000-1004 ◽  
Author(s):  
Robert F. Rushmer ◽  
Nolan Watson ◽  
Donald Harding ◽  
Donald Baker

In some earlier studies on exsanguination hypotension in conscious dogs, reduction in systemic arterial pressure to shock levels was accompanied by a transient tachycardia during the removal of blood, but the heart rate returned to level, at or near control values during extended periods with the mean arterial pressure between 40 and 60 mm Hg. This observation stimulated a series of experiments on five healthy conscious dogs in which transient hypotension was induced by withdrawing blood from the region of the right atrium to determine which mechanisms were dominant in the compensatory reaction. A surprising degree of variability in response was encountered, such that tachycardia was the main response on some occasions, increased peripheral resistance on others, and in still others, several mechanisms appeared to play a role. Similar variability in the response to exsanguination have been reported in human subjects. These observations suggest that the baroceptor reflexes are not simple servo controls and their role in everyday cardiovascular responses should be re-examined.


1990 ◽  
Vol 68 (2) ◽  
pp. 561-567 ◽  
Author(s):  
K. C. Kregel ◽  
J. M. Overton ◽  
D. R. Seals ◽  
C. M. Tipton ◽  
L. A. Fisher

The effects of intracerebroventricular (icv) administration of a corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical CRF, on systemic and regional hemodynamic adjustments to exercise were studied in conscious rats. On consecutive days, rats received saline icv, alpha-helical CRF icv, and no treatment 30 min before treadmill exercise (TMX). Increases in heart rate (HR) and mean arterial pressure (MAP) in response to TMX (16.1-28.6 m/min) were similar after icv administration of saline or no treatment. In rats receiving saline icv or no treatment, estimated vascular resistance increased in the mesenteric and renal regions and declined in the iliac (hindlimb) region. After icv administration of alpha-helical CRF9-41, HR and MAP responses during TMX were significantly attenuated. In addition, TMX-induced elevations of estimated mesenteric vascular resistance and iliac blood flow velocity were blunted after CRF receptor blockade. These altered cardiovascular and hemodynamic responses were ultimately reflected in the animals' compromised ability to run. The results suggest that the central nervous system actions of endogenous CRF are necessary for the full expression of the cardiovascular adjustments to TMX in the conscious rat.


2011 ◽  
Vol 277 (1) ◽  
pp. 41-47 ◽  
Author(s):  
G. Kember ◽  
J.A. Armour ◽  
M. Zamir
Keyword(s):  

2002 ◽  
Vol 283 (5) ◽  
pp. R1227-R1235 ◽  
Author(s):  
Peter Lindholm ◽  
Jessica Nordh ◽  
Dag Linnarsson

We sought to define the role of hypoxemia in eliciting the cardiovascular responses to apnea during exercise. Eleven men performed repeated apneas during 100-W steady-state exercise, either with normoxic gas (air) or 95% oxygen (oxygen). Beat-by-beat arterial blood pressure, arterial oxygen saturation, and heart rate (HR) were determined, and stroke volume (SV) was estimated from impedance cardiography calibrated with soluble gas rebreathing. There were large interindividual variabilities of HR, mean arterial pressure (MAP), and total peripheral resistance (TPR) at end-apnea (ea). However, for each individual, HRea, MAPea, and TPRea were highly correlated between air and oxygen ( R = 0.94, 0.78, and 0.93). HR decreased and MAP increased faster during apnea with air than with oxygen (ANOVA, P < 0.05), but MAPea was not different between conditions. Cardiac output was reduced by 33% with air and by 11% with oxygen ( P < 0.001 for air vs. oxygen). We conclude that the hypoxemia component cannot account for the wide interindividual differences of HR and TPR responses to apnea. However, hypoxemia augments the HR and TPR responses and may limit the MAP response to apnea by preventing a bradycardia-associated increase of SV.


2010 ◽  
Vol 298 (1) ◽  
pp. R224-R234 ◽  
Author(s):  
Paul F. McCulloch ◽  
Karyn. M. DiNovo ◽  
Tiffanny M. Connolly

The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response).


1960 ◽  
Vol 38 (12) ◽  
pp. 1411-1416 ◽  
Author(s):  
C. W. Gowdey

Methemoglobinemia induced in normal anesthetized dogs by intravenous infusions of aniline resulted in a decreased arterial oxygen content and a marked increase in cardiac output. Heart rate, arterial pressure, blood viscosity, and oxygen consumption increased, while total peripheral resistance and arteriovenous oxygen difference decreased. The elevation of cardiac output occurred in spite of the fact that the hematocrit level and blood viscosity increased. Ganglion-blocking doses of pentolinium bitartrate did not significantly alter the cardiovascular responses to the methemoglobinemia.


Sign in / Sign up

Export Citation Format

Share Document