Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity

2000 ◽  
Vol 203 (11) ◽  
pp. 1633-1648 ◽  
Author(s):  
F. Grolleau ◽  
B. Lapied

The efferent dorsal unpaired median (DUM) neurones, which include octopaminergic neurones, are among the most intensively studied neurones in the insect central nervous system. They differ from other insect neurones in generating endogenous spontaneous overshooting action potentials. The second half of the 1980s is certain to be considered a turning point in the study of the ion channels underlying the electrical activity of DUM neurones. Recent advances made using the patch-clamp technique have stimulated an increasing interest in the understanding of the biophysical properties of both voltage-dependent and voltage-independent ion channels. Patch-clamp studies of DUM neurones in cell culture demonstrate that these neurones express a wide variety of ion channels. At least five different types of K(+) channel have been identified: inward rectifier, delayed rectifier and A-like channels as well as Ca(2+)- and Na(+)-activated K(+) channels. Moreover, besides voltage-dependent Na(+) and Ca(2+)-sensitive Cl(−) channels, DUM neurones also express four types of Ca(2+) channel distinguished on the basis of their kinetics, voltage range of activation and pharmacological profile. Finally, two distinct resting Ca(2+) and Na(+) channels have been shown to be involved in maintaining the membrane potential and in regulating the firing pattern. In this review, we have also attempted critically to evaluate these existing ion channels with regard to their specific functions in the generation of the different phases of the spontaneous electrical activity of the DUM neurone.

2012 ◽  
Vol 12 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Dan-Thanh T. Nguyen ◽  
Melissa J. Blacker ◽  
James A. Goodchild

Author(s):  
R H. Selinfreund ◽  
A. H. Cornell-Bell

Cellular electrophysiological properties are normally monitored by standard patch clamp techniques . The combination of membrane potential dyes with time-lapse laser confocal microscopy provides a more direct, least destructive rapid method for monitoring changes in neuronal electrical activity. Using membrane potential dyes we found that spontaneous action potential firing can be detected using time-lapse confocal microscopy. Initially, patch clamp recording techniques were used to verify spontaneous electrical activity in GH4\C1 pituitary cells. It was found that serum depleted cells had reduced spontaneous electrical activity. Brief exposure to the serum derived growth factor, IGF-1, reconstituted electrical activity. We have examined the possibility of developing a rapid fluorescent assay to measure neuronal activity using membrane potential dyes. This neuronal regeneration assay has been adapted to run on a confocal microscope. Quantitative fluorescence is then used to measure a compounds ability to regenerate neuronal firing.The membrane potential dye di-8-ANEPPS was selected for these experiments. Di-8- ANEPPS is internalized slowly, has a high signal to noise ratio (40:1), has a linear fluorescent response to change in voltage.


1999 ◽  
Vol 268 (2) ◽  
pp. 77-80 ◽  
Author(s):  
Masahiko Kase ◽  
Shingo Kakimoto ◽  
Satoru Sakuma ◽  
Takeshi Houtani ◽  
Hitoshi Ohishi ◽  
...  

1988 ◽  
Vol 137 (1) ◽  
pp. 1-11
Author(s):  
Susan E. Acklin

A study has been made of the electrical connections between touch sensory (T) neurones in the leech central nervous system (CNS) which display remarkable double rectification: depolarization spreads in both directions although hyperpolarization spreads poorly. Tests were made to determine whether this double rectification was a property of the junctions themselves or whether it resulted from changes in the length constants of processes intervening between the cell body and the junctions. Following trains of action potentials, T cells and their fine processes within the neuropile became hyperpolarized through the activity of an electrogenie sodium pump. When any T cell was hyperpolarized by 25 mV by repetitive stimulation, hyperpolarization failed to spread to the T cells to which it was electrically coupled. Further evidence for double rectification of junctions linking T cells was provided by experiments in which Cl− was injected electrophoretically. Cl− injection into one T cell caused inhibitory potentials recorded in it to become reversed. After a delay, Cl− spread to reverse IPSPs in the coupled T cell. Movement of Cl−, like current flow, was dependent on membrane potential. When the T cell into which Cl− was injected was kept hyperpolarized, Cl− failed to move into the adjacent T cell. Upon release of the hyperpolarization in the injected T cell, Cl− moved and reversed IPSPs in the coupled T cell. Together these results indicate that the gating properties of channels linking T cells are voltage-dependent, such that depolarization of either cell allows channels to open whereas hyperpolarization causes them to close.


Sign in / Sign up

Export Citation Format

Share Document