Seasonal changes in physiology and development of cold hardiness in the hatchling painted turtle Chrysemys picta

2000 ◽  
Vol 203 (22) ◽  
pp. 3459-3470 ◽  
Author(s):  
J.P. Costanzo ◽  
J.D. Litzgus ◽  
J.B. Iverson ◽  
R.E. Lee

Hatchling painted turtles (Chrysemys picta) commonly hibernate in shallow, natal nests where winter temperatures may fall below −10 degrees C. Although hatchlings are moderately freeze-tolerant, they apparently rely on supercooling to survive exposure to severe cold. We investigated seasonal changes in physiology and in the development of supercooling capacity and resistance to inoculative freezing in hatchling Chrysemys picta exposed in the laboratory to temperatures that decreased from 22 to 4 degrees C over a 5.5 month period. For comparison, we also studied hatchling snapping turtles (Chelydra serpentina), a less cold-hardy species that usually overwinters under water. Although Chrysemys picta and Chelydra serpentina differed in some physiological responses, both species lost dry mass, catabolized lipid and tended to gain body water during the acclimation regimen. Recently hatched, 22 degrees C-acclimated Chrysemys picta supercooled only modestly (mean temperature of crystallization −6.3+/−0.2 degrees C; N=6) and were susceptible to inoculation by ice nuclei in a frozen substratum (mean temperature of crystallization −1.1+/−0.1 degrees C; N=6) (means +/− s.e.m.). In contrast, cold-acclimated turtles exhibited pronounced capacities for supercooling and resistance to inoculative freezing. The development of cold hardiness reflected the elimination or deactivation of potent endogenous ice nuclei and an elevation of blood osmolality that was due primarily to the retention of urea, but was not associated with accumulation of the polyols, sugars or amino acids commonly found in the cryoprotection systems of other animals. Also, Chrysemys picta (and Chelydra serpentina) lacked both antifreeze proteins and ice-nucleating proteins, which are used by some animals to promote supercooling and to initiate freezing at the high temperatures conducive to freezing survival, respectively.

1997 ◽  
Vol 200 (1) ◽  
pp. 185-192 ◽  
Author(s):  
V Bennett ◽  
R Lee

Although seasonal changes in the freeze-tolerance of third-instar larvae of Eurosta solidaginis have been well documented for the whole organism, the nature of this cold-hardiness at the cellular level has not been examined. Seasonal changes in the survival of fat body cells from E. solidaginis larvae were assessed using fluorescent vital dyes after freezing at -10, -25 or -80 °C for 24 h both in vivo and in vitro. Cells frozen in vitro were frozen with glycerol, with sorbitol (both of which enhanced cell survival) or without cryoprotectants. Both cellular and organismal survival were low in August when larvae were not freeze-tolerant, then increased dramatically during September and October before leveling off from November to January. This observation for cells frozen without cryoprotectants indicates that the cells themselves have adapted. The single most important factor influencing cell survival, as determined by logistic regression modeling, was the time of larval collection, which reflects the level of cold-hardiness achieved by field acclimation. Cells frozen in vivo exhibited greater survival than did those frozen in vitro, even with the addition of cryoprotectants. Since no differences were observed between cells frozen with glycerol or sorbitol, the role of the multi-component cryoprotectant system present in E. solidaginis should be investigated.


1995 ◽  
Vol 127 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Paul Fields ◽  
Stéphan Pouleur ◽  
Claude Richard

AbstractCold treatment is used to control the rusty grain beetle (Cryptolestes ferrugineus) (Coleoptera: Cucujidae), the predominant insect pest of stored grain in Canada. However, because it is difficult to cool the grain enough to control C. ferrugineus quickly, we have examined ways to reduce the cold-tolerance of adult C. ferrugineus, the most cold-hardy stage. We compared the efficacy of two ice nucleators, Pseudomonas syringae and Fusarium avenaceum, to decrease cold-tolerance of this insect, as well as their thermal stability. Ice nuclei from the bacteria P. syringae raised C. ferrugineus supercooling point from −17 to −6 °C, and increased mortality at −9°C for 24 h from 11 to 100%. Pseudomonas syringae held at 30°C for 16 weeks showed only a slight decline in its ability to reduce C. ferrugineus cold-tolerance. The fungus F. avenaceum raised the supercooling point of C. ferrugineus from −17 to −9°C, but only increased the mortality at −9°C for 24 h from 10 to 33%. Wheat treated with F. avenaceum and held at 30°C for 4 weeks reduced the cold-hardiness of C. ferrugineus, but had no effect after 8 weeks at 30°C. One reason for the difference between the two nucleators is that P. syringae had approximately 1000 times more ice nuclei per gram than did F. avenaceum. These results suggest that P. syringae is stable enough to reduce C. ferrugineus cold-tolerance after several weeks on warm grain. We discuss possible ways to increase the ice-nucleating activity of F. avenaceum.


2004 ◽  
Vol 82 (4) ◽  
pp. 594-600 ◽  
Author(s):  
Stephen A Dinkelacker ◽  
Jon P Costanzo ◽  
John B Iverson ◽  
Richard E Lee, Jr.

The overwintering habits of hatchling Blanding's turtles, Emydoidea blandingii (Holbrook, 1838), are not well understood. To ascertain whether these turtles are well suited to hibernation on land, we examined susceptibility to dehydration, supercooling capacity, resistance to inoculative freezing, capacity for freeze tolerance, and physiological responses to somatic freezing in laboratory-reared, hatchling E. blandingii. Rates of evaporative water loss (mean ± SE = 4.1 ± 0.2 mg·g–1·d–1) were intermediate to rates previously reported for the hatchlings of species known to hibernate on land and in water. Supercooled hatchlings recovered from a 1-h exposure to –8 °C or a 7-d exposure to –4 °C. Additional turtles supercooled to –14.3 ± 1.2 °C (mean ± SE) before spontaneously freezing. However, when immersed in frozen soil, their capacity to supercool was severely limited by an inability to resist inoculative freezing following contact with external ice and ice nuclei. Therefore, hatchlings likely do not use supercooling as a winter survival strategy. Hatchlings tolerated a 72-h period of somatic freezing to –3.5 °C and responded to somatic freezing by increasing plasma concentrations of the putative cryoprotectants lactate and glucose. Our results suggest that hatchling E. blandingii could overwinter in moist, terrestrial hibernacula where risk of dehydration is reduced and freeze tolerance is promoted.


Ecology ◽  
2000 ◽  
Vol 81 (2) ◽  
pp. 346-360 ◽  
Author(s):  
Jon P. Costanzo ◽  
Jacqueline D. Litzgus ◽  
John B. Iverson ◽  
Richard E. Lee

Ecology ◽  
2000 ◽  
Vol 81 (2) ◽  
pp. 346 ◽  
Author(s):  
Jon P. Costanzo ◽  
Jacqueline D. Litzgus ◽  
John B. Iverson ◽  
Richard E. Lee

1998 ◽  
Vol 201 (22) ◽  
pp. 3105-3112 ◽  
Author(s):  
J P Costanzo ◽  
J D Litzgus ◽  
J B Iverson ◽  
R E Lee

Hatchling painted turtles (Chrysemys picta) hibernate in their shallow natal nests where temperatures occasionally fall below -10 C during cold winters. Because the thermal limit of freeze tolerance in this species is approximately -4 C, hatchlings rely on supercooling to survive exposure to extreme cold. We investigated the influence of environmental ice nuclei on susceptibility to inoculative freezing in hatchling C. picta indigenous to the Sandhills of west-central Nebraska. In the absence of external ice nuclei, hatchlings cooled to -14.6 1.9 C (mean s.e.m.; N=5) before spontaneously freezing. Supercooling capacity varied markedly among turtles cooled in physical contact with sandy soil collected from nesting locales or samples of the native soil to which water-binding agents (clay or peat) had been added, despite the fact that all substrata contained the same amount of moisture (7.5 % moisture, w/w). The temperature of crystallization (Tc) of turtles exposed to frozen native soil was -1.6 0.4 C (N=5), whereas turtles exposed to frozen soil/clay and soil/peat mixtures supercooled extensively (mean Tc values approximately -13 C). Hatchlings cooled in contact with drier (less than or equal to 4 % moisture) native soil also supercooled extensively. Thus, inoculative freezing is promoted by exposure to sandy soils containing abundant moisture and little clay or organic matter. Soil collected at turtle nesting locales in mid and late winter contained variable amounts of moisture (4-15 % w/w) and organic matter (1-3 % w/w). In addition to ice, the soil at turtle nesting locales may harbor inorganic and organic ice nuclei that may also seed the freezing of hatchlings. Bulk samples of native soil, which were autoclaved to destroy any organic nuclei, nucleated aqueous solutions at approximately -7 C (Tc range -6.1 to -8.2 C). Non-autoclaved samples contained water-extractable, presumably organic, ice nuclei (Tc range -4.4 to -5.3 C). Ice nuclei of both classes varied in potency among turtle nesting locales. Interaction with ice nuclei in the winter microenvironment determines whether hatchling C. picta remain supercooled or freeze and may ultimately account for differential mortality in nests at a given locale and for variation in winter survival rates among populations.


1990 ◽  
Vol 68 (6) ◽  
pp. 1307-1314 ◽  
Author(s):  
Robert S. Copeland ◽  
George B. Craig Jr.

We examined cold hardiness of the overwintering stages of five species of North American tree-hole mosquitoes through laboratory experiments and field observations. Among the species that overwinter as larvae, fall-collected individuals were freeze tolerant, whereas all summer-collected larvae were killed by freezing. Cold hardiness varied among species and among larval stages within species. The order of diminishing cold tolerance was Orthopodmyia alba, Anopheles barberi, and Orthopodomyia signifera. Some O. alba larvae survived freezing at −25 °C, the lowest temperature reported to be survived by an aquatic animal in ice. Prolonged (up to 16 days) and multiple (four) exposures to −15 °C had no effect on survival of O. alba third-instar larvae, but increased mortality of second instars of O. alba and A. barberi. Species were more tolerant of cold when frozen in rot-hole water in which they are commonly found in nature than in "pan" water in which they rarely occur. Both photoperiodically induced dormancy and prefreezing exposure to low temperature were necessary for the establishment of cold hardiness in laboratory-reared A. barberi. Eggs of Aedes triseriatus and Aedes hendersoni were more cold hardy than larvae of Orthopodomyia and Anopheles. Neither preconditioning to cold nor dormancy was necessary for survival at −15 °C for 24 h. Females that had survived temperatures to −25 °C as eggs showed no impairment of reproductive capability.


1979 ◽  
Vol 57 (9) ◽  
pp. 997-999 ◽  
Author(s):  
R. J. Reader

In laboratory freezing trials, cold hardiness of six types of bog ericad flowers differed significantly (i.e., Chamaedaphne calyculata > Andromeda glaucophylla > Kalmia polifolia > Vaccinium myrtilloides > Ledum groenlandicum > Vaccinium macrocarpon) at air temperatures between −4 and −10 °C but not at temperatures above −2 °C. At the Luther Marsh bog in southern Ontario, low temperatures (−3 to −7 °C) would select against May flowering by the least cold hardy ericads. Availability of pollinators, on the other hand, would encourage May flowering by the most cold hardy species. Presumably, competition for insect pollinators has promoted the diversification of bog ericad flowering peaks, while air temperature, in conjunction with flower cold hardiness, determined the order in which flowering peaks were reached.


Sign in / Sign up

Export Citation Format

Share Document