THE EFFECT OF HIGH TEMPERATURE STORAGE ON THE CAPACITY OF AN ICE-NUCLEATING-ACTIVE BACTERIUM AND FUNGUS TO REDUCE INSECT COLD-TOLERANCE

1995 ◽  
Vol 127 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Paul Fields ◽  
Stéphan Pouleur ◽  
Claude Richard

AbstractCold treatment is used to control the rusty grain beetle (Cryptolestes ferrugineus) (Coleoptera: Cucujidae), the predominant insect pest of stored grain in Canada. However, because it is difficult to cool the grain enough to control C. ferrugineus quickly, we have examined ways to reduce the cold-tolerance of adult C. ferrugineus, the most cold-hardy stage. We compared the efficacy of two ice nucleators, Pseudomonas syringae and Fusarium avenaceum, to decrease cold-tolerance of this insect, as well as their thermal stability. Ice nuclei from the bacteria P. syringae raised C. ferrugineus supercooling point from −17 to −6 °C, and increased mortality at −9°C for 24 h from 11 to 100%. Pseudomonas syringae held at 30°C for 16 weeks showed only a slight decline in its ability to reduce C. ferrugineus cold-tolerance. The fungus F. avenaceum raised the supercooling point of C. ferrugineus from −17 to −9°C, but only increased the mortality at −9°C for 24 h from 10 to 33%. Wheat treated with F. avenaceum and held at 30°C for 4 weeks reduced the cold-hardiness of C. ferrugineus, but had no effect after 8 weeks at 30°C. One reason for the difference between the two nucleators is that P. syringae had approximately 1000 times more ice nuclei per gram than did F. avenaceum. These results suggest that P. syringae is stable enough to reduce C. ferrugineus cold-tolerance after several weeks on warm grain. We discuss possible ways to increase the ice-nucleating activity of F. avenaceum.

2014 ◽  
Vol 147 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Ahmed Y. Abdelghany ◽  
Duangsamorn Suthisut ◽  
Paul G. Fields

AbstractThe warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a stored-product pest with scant information on its cold tolerance. Ninety-two per cent of larvae reared in isolation at 30 °C went into diapause in the seventh instar, the remaining 8% emerged as adults in 50 days. Diapausing larvae died after 142 days in the 10th instar. The cold tolerance at 0 °C from highest to lowest was; old larvae>pupae>adult=young larvae>eggs. The LT50 (lethal time for 50% of the population) for grouped (non-diapause) non-acclimated old larvae at 0 °C, −5 °C, −10 °C, −16 °C, and −19 °C were; 20, 11, 5, 1, and 1 day, the LT95 were; 38, 15, 10, 5, and 1 days, respectively. The LT50 for isolated (diapausing), cold-acclimated old larvae at the same temperatures were; 275, 125, 74, 26, and 18 days, and the LT95 were; 500, 160, 100, 45, 20 days, respectively. The supercooling point (SCP) of different stages of non-acclimated insects ranged from −25.3 °C (eggs) to −16.1 °C (young larvae). The most cold hardy stage, isolated and acclimated old larvae, had a SCP of −24.9 °C. The potential of using low temperatures to control T. variabile is discussed.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 207
Author(s):  
Hana Daneck ◽  
Matthias Benjamin Barth ◽  
Martin Geck ◽  
Anna K. Hundsdoerfer

The spurge hawkmoth Hyles euphorbiae L. (Sphingidae) comprises a remarkable species complex with still not fully resolved taxonomy. Its extensive natural distribution range covers diverse climatic zones. This predestinates particular populations to cope with different local seasonally unfavorable environmental conditions. The ability of the pupae to overcome outer frosty conditions is well known. However, the differences between two main ecotypes (‘euphorbiae’ and ‘tithymali’) in terms of the inherent degree of frost tolerance, its corresponding survival strategy, and underlying mechanism have not been studied in detail so far. The main aim of our study was to test the phenotypic exhibition of pupae (as the relevant life cycle stadia to outlast unfavorable conditions) in response to combined effects of exogenous stimuli, such as daylight length and cooling regime. Namely, we tested the turnout of subitan (with fast development, unadapted to unfavorable conditions) or diapause (paused development, adapted to unfavorable external influences and increased resistance) pupae under different conditions, as well as their mortality, and we measured the super cooling point (SCP) of whole pupae (in vivo) and pupal hemolymph (in vitro) as phenotypic indicators of cold acclimation. Our results show higher cold sensitivity in ‘tithymali’ populations, exhibiting rather opportunistic and short-termed cold hardiness, while ‘euphorbiae’ produces a phenotype of seasonal cold-hardy diapause pupae under a combined effect of short daylight length and continuous cold treatment. Further differences include the variability in duration and mortality of diapause pupae. This suggests different pre-adaptations to seasonal environmental conditions in each ecotype and may indicate a state of incipient speciation within the H. euphorbiae complex.


1991 ◽  
Vol 69 (12) ◽  
pp. 3028-3037 ◽  
Author(s):  
Olga Kukal ◽  
Matthew P. Ayres ◽  
J. Mark Scriber

A steep decline in the diversity of swallowtail butterfly species at high latitudes could be due to limited cold tolerance of overwintering pupae. If this is so, species with unusually northerly distributions should be unusually cold tolerant. We compared the northerly distributed Papilio canadensis with its southern relative, P. glaucus. Pupae were exposed for 2–5 months to four acclimatization treatments: outdoors in Alaska, outdoors in Michigan, constant 5 °C, and constant −25 °C. Field temperatures encountered by pupae in Alaska were lower than in Michigan. The supercooling point of P. glaucus pupae was unaffected by acclimatization (mean ± SE= −23.5 ± 0.52 °C). The supercooling point of P. canadensis pupae did not differ from that of P. glaucus pupae, except following acclimatization in Alaska, when it dropped to −27.0 ± 0.55 °C. Survival of pupae in Michigan was high for all populations (70–90%); in Alaska, survival of P. canadensis was just as high, but survival of P. glaucus dropped to 14%. Freezing was usually fatal in both species, but death was not immediate. No pupae survived 6 weeks at −25 °C. Trehalose was the most conspicuous metabolite revealed by nuclear magnetic resonance spectroscopy of live pupae and hemolymph. Labelled glucose was metabolized differently by the two species, which may underly the difference in acclimation potential and cold tolerance. The results support the hypothesis that winter temperatures limit swallowtail distributions.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1142f-1142
Author(s):  
C.L. Haynes ◽  
O. M. Lindstrom ◽  
M. A. Dirr

The effects of timing of pruning in relation to cold hardiness of X Cupressocyparis leylandii (A. B. Jacks. and Dallim.) Dallim. and A. B. Jacks. `Haggerston Grey' and Lagerstroemia L. `Natchez' were evaluated on 6 test dates from August 1989 to March 1990. Pruning treatments decreased the cold hardiness of both taxa compared to unpruned controls on 5 test dates. Cold tolerance of `Haggerston Grey' decreased for 4 to 5 months following the August and October pruning compared to the unpruned controls. `Haggerston Grey's cold tolerance were reduced by 6C in February. October and December pruning of `Natchez' reduced cold hardiness by 4C in January. However, cold hardiness of January and February pruning treatments was similar to unpruned controls. In general, the data indicated that plants of `Haggerston Grey' pruned in October through February were less cold hardy than plants pruned in August. Ideally, `Natchez' crape myrtle should be pruned in late winter.


2020 ◽  
Vol 113 (3) ◽  
pp. 1254-1261
Author(s):  
Jiahe Pei ◽  
Chengcheng Li ◽  
Lili Ren ◽  
Shixiang Zong

Abstract Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) is a woodboring pest that severely damages urban and plain afforestation trees in northern China. Cold hardiness is an important strategy for the insect to survived during low winter temperatures. Understanding the strategy of S. insularis might provide insights for pest management approaches. To assess the key factors affecting cold hardiness, we measured the supercooling point, freezing point, total water content, total fat content, glycogen content, and total protein content of overwintering larvae. The relationships between supercooling points, temperature, body size, and nutrients were analyzed. The results showed that the supercooling point and freezing point of the larvae decreased first, reached the lowest point in January, and then increased during the rest of the overwintering period. The supercooling point positively correlated with the daily average temperature and the daily minimum temperature. Total lipid content negatively correlated with the supercooling point, while glycogen content had a significant positive correlation with the supercooling point. The temperature may have a major impact on cold hardiness, whereas individual body size may have no significant influence over cold tolerance. During the overwintering process, glycogen and total lipid contents may directly affect cold hardiness. Therefore, the lipid and carbohydrate metabolism may play a role in the cold tolerance of S. insularis larvae. This study provides a physiological and biochemical basis for future metabolic studies on S. insularis larva and the research of overwintering strategies.


2014 ◽  
Vol 31 (4) ◽  
pp. 913-922 ◽  
Author(s):  
Joseph Niehaus ◽  
Kristopher W. Bunker ◽  
Swarup China ◽  
Alexander Kostinski ◽  
Claudio Mazzoleni ◽  
...  

Abstract This study presents a new technique to study ice nucleation by aerosols in the contact mode. Contact freezing depends upon the interaction of a supercooled droplet of water and an aerosol particle, with the caveat that the particle must be at the air–water interface. To measure nucleation catalyzed in this mode, the technique employs water droplets that are supercooled via a temperature-controlled copper stage, then pulls aerosol-laden air past them. Particles deposit out of the airstream and come into contact with the surface of the droplet. The probability that a particle–droplet collision initiates a freezing event, necessitating knowledge of the total number of particles that collide with the droplet, is reported. In tests of the technique, ice nucleation by the bacteria Pseudomonas syringae is found to be more efficient in the contact mode than in the immersion mode by two orders of magnitude at −3°C with the difference diminishing by −8°C.


1990 ◽  
Vol 68 (5) ◽  
pp. 830-835 ◽  
Author(s):  
W. J. Turnock ◽  
P. M. Reader ◽  
G. K. Bracken

The Canadian population of Delia radicum is more cold hardy than the English population in that the supercooling point is slightly lower and overwintering pupae are less sensitive to lower temperatures and longer exposure times. However, the Canadian population is slightly less cold hardy at higher temperatures within the cold injury zone. Female D. radicum were more susceptible to cold-induced mortality than males among the Canadian population, but this sex difference was not significant in the English population. The proportion of malformed adults and the rate of postdiapause development were not related to cold injury in either population. The bounds of the cold injury zone for species or populations of freezing susceptible, diapausing insects plus the sensitivity of the species to cold injury within this zone can provide an ecologically sound method of describing cold hardiness. Sensitivity, measured by the slope of a regression describing the relationship between survival and the duration of exposure at a low temperature, can also be used to calculate the rate at which cold injury occurs at any temperature within the cold injury zone. This slope may reflect the overwintering conditions of a species or population because Canadian populations of both D. radicum and Mamestra configurata (Noctuidae) have similar coefficients, but these are very different from the coefficient of the English population of D. radicum. The supercooling point did not provide a useful indication of the susceptibility of these cold-hardy diapausing insects to cold injury.


2001 ◽  
Vol 133 (3) ◽  
pp. 325-327
Author(s):  
Xingwei Hou ◽  
Paul Fields ◽  
Terry Galloway

In North America, the black carpet beetle, Attagenus unicolor (Brahm) (Coleoptera: Dermestidae), is a common household insect pest that feeds on many animal-origin and grain products. It overwinters as a larva, and the entire life cycle generally takes about 1 year. No information exists on its overwintering biology or cold hardiness (Fields 1992). In this experiment, the supercooling point (SCP) and survival rate of initially overwintering A. unicolor larvae collected in the nests of tree swallows, Tachycineta bicolor (Vieillot) (Aves: Hirundinidae), were measured. Changes in SCP and cold hardiness were determined for larvae held at 15 and –15°C. The cold hardiness of A. unicolor larvae collected from a feed mill in British Columbia was also measured.


2000 ◽  
Vol 203 (22) ◽  
pp. 3459-3470 ◽  
Author(s):  
J.P. Costanzo ◽  
J.D. Litzgus ◽  
J.B. Iverson ◽  
R.E. Lee

Hatchling painted turtles (Chrysemys picta) commonly hibernate in shallow, natal nests where winter temperatures may fall below −10 degrees C. Although hatchlings are moderately freeze-tolerant, they apparently rely on supercooling to survive exposure to severe cold. We investigated seasonal changes in physiology and in the development of supercooling capacity and resistance to inoculative freezing in hatchling Chrysemys picta exposed in the laboratory to temperatures that decreased from 22 to 4 degrees C over a 5.5 month period. For comparison, we also studied hatchling snapping turtles (Chelydra serpentina), a less cold-hardy species that usually overwinters under water. Although Chrysemys picta and Chelydra serpentina differed in some physiological responses, both species lost dry mass, catabolized lipid and tended to gain body water during the acclimation regimen. Recently hatched, 22 degrees C-acclimated Chrysemys picta supercooled only modestly (mean temperature of crystallization −6.3+/−0.2 degrees C; N=6) and were susceptible to inoculation by ice nuclei in a frozen substratum (mean temperature of crystallization −1.1+/−0.1 degrees C; N=6) (means +/− s.e.m.). In contrast, cold-acclimated turtles exhibited pronounced capacities for supercooling and resistance to inoculative freezing. The development of cold hardiness reflected the elimination or deactivation of potent endogenous ice nuclei and an elevation of blood osmolality that was due primarily to the retention of urea, but was not associated with accumulation of the polyols, sugars or amino acids commonly found in the cryoprotection systems of other animals. Also, Chrysemys picta (and Chelydra serpentina) lacked both antifreeze proteins and ice-nucleating proteins, which are used by some animals to promote supercooling and to initiate freezing at the high temperatures conducive to freezing survival, respectively.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1142F-1142
Author(s):  
C.L. Haynes ◽  
O. M. Lindstrom ◽  
M. A. Dirr

The effects of timing of pruning in relation to cold hardiness of X Cupressocyparis leylandii (A. B. Jacks. and Dallim.) Dallim. and A. B. Jacks. `Haggerston Grey' and Lagerstroemia L. `Natchez' were evaluated on 6 test dates from August 1989 to March 1990. Pruning treatments decreased the cold hardiness of both taxa compared to unpruned controls on 5 test dates. Cold tolerance of `Haggerston Grey' decreased for 4 to 5 months following the August and October pruning compared to the unpruned controls. `Haggerston Grey's cold tolerance were reduced by 6C in February. October and December pruning of `Natchez' reduced cold hardiness by 4C in January. However, cold hardiness of January and February pruning treatments was similar to unpruned controls. In general, the data indicated that plants of `Haggerston Grey' pruned in October through February were less cold hardy than plants pruned in August. Ideally, `Natchez' crape myrtle should be pruned in late winter.


Sign in / Sign up

Export Citation Format

Share Document