Heat-shock-induced thermoprotection of hindleg motor control in the locust

2000 ◽  
Vol 203 (5) ◽  
pp. 941-950 ◽  
Author(s):  
J.W. Barclay ◽  
R.M. Robertson

Functional neuromuscular connections are critical for appropriate behavioural responses, but can be negatively affected by increases in temperature. We investigated the effects of heat shock on the thermosensitivity of a neuromuscular pathway to the hindleg tibial extensor muscle of Locusta migratoria. We found that exposure to heat shock induced thermoprotection of both neuromuscular transmission and extensor muscle contraction by (i) increasing the upper temperature limit for failure, (ii) improving recovery following heat-induced failure and (iii) stabilizing excitatory junction potential amplitude and duration and extensor muscle contraction force at high temperatures. Furthermore, the heat-shock-induced thermoprotection of extensor muscle contraction was not attributable to a protective effect on intrinsic components of muscle contraction. Finally, the use of jumping as a locomotor strategy to avoid capture, a behavioural response dependent upon functionally competent neuromuscular connections at the hindleg tibial extensor muscle, became less sensitive to temperature following heat shock. We conclude that the natural stress response of the locust stabilizes neuromuscular signalling during temperature stress, and that this can underlie a thermoprotection of muscle contraction force and thus alter the thermosensitivity of an escape behaviour critical for survival.

1996 ◽  
Vol 199 (3) ◽  
pp. 613-625
Author(s):  
T Jellema ◽  
W Heitler

The metathoracic fast extensor tibiae (FETi) motor neurone of locusts is unusual amongst insect motor neurones because it makes output connections within the central nervous system as well as in the periphery. It makes excitatory chemical synaptic connections to most if not all of the antagonist flexor tibiae motor neurones. The gain of the FETi-flexor connection is dependent on the peripheral conditions at the time of the FETi spike. This dependency has two aspects. First, sensory input resulting from the extensor muscle contraction can sum with the central excitatory postsynaptic potential (EPSP) to augment its falling phase if the tibia is restrained in the flexed position (initiating a tension-dependent reflex) or is free to extend (initiating a movement-dependent resistance reflex). This effect is thus due to simple postsynaptic summation of the central EPSP with peripheral sensory input. Second, the static tibial position at the time of the FETi spike can change the amplitude of the central EPSP, in the absence of any extensor muscle contraction. The EPSP can be up to 30 % greater in amplitude if FETi spikes with the tibia held flexed rather than extended. The primary sense organ mediating this effect is the femoral chordotonal organ. Evidence is presented suggesting that the mechanism underlying this change in gain may be specifically localised to the FETi-flexor connection, rather than being due to general position-dependent sensory feedback summing with the EPSP. The change in the amplitude of the central EPSP is probably not caused by general postsynaptic summation with tonic sensory input, since a diminution in the amplitude of the central EPSP caused by tibial extension is often accompanied by overall tonic excitation of the flexor motor neurone. Small but significant changes in the peak amplitude of the FETi spike have a positive correlation with changes in the EPSP amplitude, suggesting a likely presynaptic component to the mechanism of gain control. The change in amplitude of the EPSP can alter its effectiveness in producing flexor motor output and, thus, has functional significance. The change serves to augment the effectiveness of the FETi-flexor connection when the tibia is fully flexed, and thus to increase its adaptive advantage during the co-contraction preceding a jump or kick, and to reduce the effectiveness of the connection when the tibia is partially or fully extended, and thus to reduce its potentially maladaptive consequences during voluntary extension movements such as thrusting.


1994 ◽  
Vol 19 (3) ◽  
pp. 273-276 ◽  
Author(s):  
G. LUNDBORG ◽  
B. ROSÉN ◽  
S. O. ABRAHAMSON ◽  
L. DAHLIN ◽  
N. DANIELSEN

Transected median nerves in the forearm of two male patients, 12 and 21 years of age, were treated with a chamber technique leaving a 3 to 5 mm gap between the nerve ends. The nerve ends were enclosed in a silicone tube of such a dimension that would not cause compression of the nerve. Post-operative examination including sensory evaluation and assessment of muscle contraction force was carried out after 3 years. In both cases there was excellent motor recovery of the thenar muscles. Outgrowth of sensory fibres was remarkably fast, resulting ultimately in functional sensibility allowing almost normal hand function. 2PD was ⩽ 6 mm (12year-old patient) and 8 to 10 mm (21-year-old patient) respectively. In one case the silicone tube was re-explored because of minor local discomfort 2 years after the repair. The former gap was bridged by a smooth continuous nerve-like structure of the same diameter as the adjacent nerve trunk and with no signs of nenroma formation or compression of the nerve.


1982 ◽  
Vol 242 (1) ◽  
pp. C59-C64 ◽  
Author(s):  
C. A. Colton ◽  
J. S. Colton

Diamide[diazine-dicarboxylic acid-bis(dimethylamide)], a thiol-oxidizing agent, has both pre- and postsynaptic actions on the glutaminergic neuromuscular junction of the lobster walking leg. Postsynaptically, diamide produced an increase in the response to exogenously applied glutamate, whereas the effect of diamide on presynaptic transmitter release involved two major changes: 1) a decrease in excitatory junction potential amplitude and 2) an increase in miniature junction potential frequency. Short-term facilitation also decreased. Equilibration with 1,4-dithiothreitol (a sulfhydryl-reducing agent) reversed the decline in excitatory junction potential frequency, and the fall in short-term facilitation. The miniature junction potential frequency increase induced by diamide was independent of external Ca2+, as diamide in a Ca2+-free solution produced a similar response to that in a Ca2+-containing solution. We propose that the action of diamide on transmitter release is similar to the action of polyvalent cations, i.e., diamide has two sites of action, a blockade of inward Ca2+ flux and an increased release of Ca2+ inside the terminal.


1999 ◽  
Vol 277 (1) ◽  
pp. R24-R30 ◽  
Author(s):  
Timothy Pearson ◽  
David Hyde ◽  
Ken Bowler

The control of the attainment of acclimation in Cancer pagurus has been studied. Homologous (8 or 22°C) and heterologous acclimation [central nervous system (CNS) and periphery of crabs simultaneously held at 8 or 22°C] were used. The dependence of electrophysiological parameters of dactylopodite closer muscles of walking legs on nerve stimulation was determined between 6 and 26°C. Muscle resting potential (RP) hyperpolarized linearly with increasing measurement temperatures and showed a 69% compensation between 8 and 22°C on homologous acclimation. With the CNS temperature constant at 8°C, the leg muscle RP showed a 72% compensation on heterologous acclimation to 8 and 22°C; when CNS temperature was constant at 22°C, leg muscle RP showed a 48% compensation on heterologous acclimation to 8 and 22°C. In homologous acclimation, the shape of the excitatory junction potential vs. temperature relationship was characteristic of acclimation temperature. In heterologous acclimation, the shape of this plot was related to the temperature experienced by the leg and not by the CNS. Thus acclimation was principally dependent on local tissue temperature and was relatively independent of CNS or hormonal influences.


Critical Care ◽  
2010 ◽  
Vol 14 (Suppl 1) ◽  
pp. P204 ◽  
Author(s):  
C Armbruster ◽  
C Dassow ◽  
K Gamerdinger ◽  
J Guttmann ◽  
M Schneider ◽  
...  

2008 ◽  
Vol 40 (Supplement) ◽  
pp. S258 ◽  
Author(s):  
Lucas C. Smith ◽  
Stefan A. Mroczkowski ◽  
Stacey Buser ◽  
Susan Bemis ◽  
Ronald Otterstetter

Sign in / Sign up

Export Citation Format

Share Document