scholarly journals Behavioural responses of threespine stickleback with lateral line asymmetries to experimental mechanosensory stimuli

Author(s):  
N. P. Planidin ◽  
T. E. Reimchen

Behavioural asymmetry, typically referred to as laterality, is widespread among bilaterians and is often associated with asymmetry in brain structure. However, the influence of sensory receptor asymmetry on laterality has undergone limited investigation. Here we use threespine stickleback (Gasterosteus aculeatus) to investigate the influence of lateral line asymmetry on laterality during lab simulations of three mechanosensation-dependent behaviours: predator evasion, prey localization and rheotaxis. We recorded the response of stickleback to impacts at the water surface and water flow in photic conditions and low-frequency oscillations in the dark, across four repeat trials. We then compared individuals’ laterality to asymmetry in the number of neuromasts on either side of their body. Stickleback hovered with their right side against the arena wall 57% of the time (P<0.001) in illuminated surface impact trials and 56% of the time in (P=0.085) dark low-frequency stimulation trials. Light regime modulated the effect of neuromast count on laterality, as fish with more neuromasts were more likely to hover with the wall on their right during illumination (P=0.007) but were less likely to do so in darkness (P=0.025). Population level laterality diminished in later trials across multiple behaviours and individuals did not show a consistent side bias in any behaviours. Our results demonstrate a complex relationship between sensory structure asymmetry and laterality, suggesting that laterality is modulated multiple sensory modalities and temporally dynamic.

2005 ◽  
Vol 50 (12) ◽  
pp. 1005-1013 ◽  
Author(s):  
Konosuke Yamasaki ◽  
Shuitsu Harada ◽  
Itsuro Higuchi ◽  
Mitsuhiro Osame ◽  
Gakuji Ito

1957 ◽  
Vol 40 (3) ◽  
pp. 435-450 ◽  
Author(s):  
David P. C. Lloyd

An assemblage of individual motoneurons constituting a synthetic motoneuron pool has been studied from the standpoint of relating monosynaptic reflex responses to frequency of afferent stimulation. Intensity of low frequency depression is not a simple function of transmitter potentiality. As frequency of stimulation increases from 3 per minute to 10 per second, low frequency depression increases in magnitude. Between 10 and approximately 60 per second low frequency depression apparently diminishes and subnormality becomes a factor in causing depression. At frequencies above 60 per second temporal summation occurs, but subnormality limits the degree of response attainable by summation. At low stimulation frequencies rhythm is determined by stimulation frequency. Interruptions of rhythmic firing depend solely upon temporal fluctuation of excitability. At high frequency of stimulation rhythm is determined by subnormality rather than inherent rhythmicity, and excitability fluctuation leads to instability of response rhythm. In short, whatever the stimulation frequency, random excitability fluctuation is the factor disrupting rhythmic response. Monosynaptic reflex response latency is stable during high frequency stimulation as it is in low frequency stimulation provided a significant extrinsic source of random bombardment is not present. In the presence of powerful random bombardment discharge may become random with respect to monosynaptic afferent excitation provided the latter is feeble. When this occurs it does so equally at low frequency and high frequency. Thus temporal summation is not a necessary factor. There is, then, no remaining evidence to suggest that the agency for temporal summation in the monosynaptic system becomes a transmitting agency in its own right.


Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.


1993 ◽  
Vol 69 (3) ◽  
pp. 953-964 ◽  
Author(s):  
P. W. Glimcher ◽  
D. L. Sparks

1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40–60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.


Sign in / Sign up

Export Citation Format

Share Document